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Announcements

• Homework Assignment #2 is due Thursday, Sept. 25th at 8 AM. Email me 

your solution as a single PDF.

• Read book chapters 3, 4, and 5

• Review the slides and PowerWorld examples
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The Main Diagram

3 bal. windings (a,b,c) – stator

Field winding (fd) on rotor

Damper in 

“d” axis

(1d) on rotor

Two dampers in 

“q” axis

(1q, 2q) on rotor
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Full Per-Unit Model, Labeled

1

𝜔𝑠

𝑑𝜓𝑑

𝑑𝑡
= 𝑉𝑑 + 𝐼𝑑𝑅𝑠 + 𝜔 + 1 𝜓𝑞  

1

𝜔𝑠

𝑑𝜓𝑞

𝑑𝑡
= 𝑉𝑞 + 𝐼𝑞𝑅𝑠 − (𝜔 + 1)𝜓𝑑  

1

𝜔𝑠

𝑑𝜓0

𝑑𝑡
= 𝑉0 + 𝐼0𝑅𝑠 

𝑇𝑑𝑜
′ 𝑑𝐸𝑞

′

𝑑𝑡
= −𝐸𝑞

′ − 𝑋𝑑 − 𝑋𝑑
′ 𝐼𝑑 −

𝑋𝑑
′ −𝑋𝑑

′′

𝑋𝑑
′ −𝑋𝓁𝑠

2 𝜓1𝑑 + 𝑋𝑑
′ − 𝑋𝓁𝑠 𝐼𝑑 − 𝐸𝑞

′ + 𝐸𝑓𝑑 

𝑇𝑑𝑜
′′ 𝑑𝜓1𝑑

𝑑𝑡
= −𝜓1𝑑 + 𝐸𝑞

′ − 𝑋𝑑
′ − 𝑋𝓁𝑠 𝐼𝑑 

𝑇𝑞𝑜
′ 𝑑𝐸𝑑

′

𝑑𝑡
= −𝐸𝑑

′ + 𝑋𝑞 − 𝑋𝑞
′ 𝐼𝑞 −

𝑋𝑞
′ −𝑋𝑞

′ ′

𝑋𝑞
′ −𝑋𝓁𝑠

2 𝜓2𝑞 + 𝑋𝑞
′ − 𝑋𝓁𝑠 𝐼𝑞 + 𝐸𝑑

′  

𝑇𝑞𝑜
′′ 𝑑𝜓2𝑞

𝑑𝑡
= −𝜓2𝑞 − 𝐸𝑑

′ − 𝑋𝑞
′ − 𝑋𝓁𝑠 𝐼𝑞 

𝑑𝛿

𝑑𝑡
= 𝜔 ⋅ 𝜔𝑠 

2𝐻
𝑑𝜔

𝑑𝑡
= 𝑇𝑀 + 𝜓𝑞𝐼𝑑 − 𝜓𝑑𝐼𝑞 − 𝑇𝐹𝑊 

𝜓𝑑 = −𝑋𝑑
′′𝐼𝑑 +

𝑋𝑑
′′−𝑋𝓁𝑠

𝑋𝑑
′ −𝑋𝓁𝑠

𝐸𝑞
′ +

𝑋𝑑
′ −𝑋𝑑

′′

𝑋𝑑
′ −𝑋𝓁𝑠

𝜓1𝑑 

𝜓𝑞 = −𝑋𝑞
′′𝐼𝑞 −

𝑋𝑞
′′−𝑋𝓁𝑠

𝑋𝑞
′ −𝑋𝓁𝑠

𝐸𝑑
′ +

𝑋𝑞
′ −𝑋𝑞

′′

𝑋𝑞
′ −𝑋𝓁𝑠

𝜓2𝑞 

𝜓0 = −𝑋𝓁𝑠𝐼0 

Stator 

Windings

Rotor Windings

Mechanical 

equations

Stator flux definitions
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Balanced Operation

• Consider a balanced set of scaled sinusoidal voltages and currents

𝑉𝑎 = 2 𝑉𝑠 cos 𝜔𝑠𝑡 + 𝜃𝑠                  𝐼𝑎 = 2 𝐼𝑠 cos 𝜔𝑠𝑡 + 𝜙𝑠

𝑉𝑏 = 2 𝑉𝑠 cos 𝜔𝑠𝑡 + 𝜃𝑠 −
2𝜋

3
        𝐼𝑏 = 2 𝐼𝑠 cos 𝜔𝑠𝑡 + 𝜙𝑠 −

2𝜋

3

𝑉𝑐 = 2 𝑉𝑠 cos 𝜔𝑠𝑡 + 𝜃𝑠 +
2𝜋

3
        𝐼𝑐 = 2 𝐼𝑠 cos 𝜔𝑠𝑡 + 𝜙𝑠 +

2𝜋

3

• Applying Park’s transformation and the definition of 𝛿 we get

𝑉𝑑 = 𝑉𝑠 sin 𝛿 − 𝜃𝑠                          𝐼𝑑 = 𝐼𝑠 sin 𝛿 − 𝜙𝑠

𝑉𝑞 = 𝑉𝑠 cos 𝛿 − 𝜃𝑠                          𝐼𝑞 = 𝐼𝑠 cos 𝛿 − 𝜙𝑠

• Which we can write compactly as two complex equations

𝑉𝑑 + 𝑗𝑉𝑞 𝑒
𝑗 𝛿−

𝜋

2 = 𝑉𝑠∠𝜃𝑠   

𝐼𝑑 + 𝑗𝐼𝑞 𝑒
𝑗 𝛿−

𝜋

2 = 𝐼𝑠∠𝜙𝑠   

We use this as our “reference frame transformation”

Instead of the full Park’s transformation in stability studies



6

Steady-State Operation

For steady-state operation,

Treat all derivatives as zero.

Then things begin to cancel…

0 = 𝑉𝑑 + 𝐼𝑑𝑅𝑠 + 𝜔 + 1 𝜓𝑞

0 = 𝑉𝑞 + 𝐼𝑞𝑅𝑠 − (𝜔 + 1)𝜓𝑑

0 = 𝑉0 + 𝐼0𝑅𝑠

0 = −𝐸𝑞
′ − 𝑋𝑑 − 𝑋𝑑

′ 𝐼𝑑 −
𝑋𝑑

′ −𝑋𝑑
′′

𝑋𝑑
′ −𝑋𝓁𝑠

2 𝜓1𝑑 + 𝑋𝑑
′ − 𝑋𝓁𝑠 𝐼𝑑 − 𝐸𝑞

′ + 𝐸𝑓𝑑

0 = −𝜓1𝑑 + 𝐸𝑞
′ − 𝑋𝑑

′ − 𝑋𝓁𝑠 𝐼𝑑

0 = −𝐸𝑑
′ + 𝑋𝑞 − 𝑋𝑞

′ 𝐼𝑞 −
𝑋𝑞

′ −𝑋𝑞
′ ′

𝑋𝑞
′ −𝑋𝓁𝑠

2 𝜓2𝑞 + 𝑋𝑞
′ − 𝑋𝓁𝑠 𝐼𝑞 + 𝐸𝑑

′

0 = −𝜓2𝑞 − 𝐸𝑑
′ − 𝑋𝑞

′ − 𝑋𝓁𝑠 𝐼𝑞

0 = 𝜔 ⋅ 𝜔𝑠

0 = 𝑇𝑀 + 𝜓𝑞𝐼𝑑 − 𝜓𝑑𝐼𝑞 − 𝑇𝐹𝑊

𝜓𝑑 = −𝑋𝑑
′′𝐼𝑑 +

𝑋𝑑
′′−𝑋𝓁𝑠

𝑋𝑑
′ −𝑋𝓁𝑠

𝐸𝑞
′ +

𝑋𝑑
′ −𝑋𝑑

′′

𝑋𝑑
′ −𝑋𝓁𝑠

𝜓1𝑑 

𝜓𝑞 = −𝑋𝑞
′′𝐼𝑞 −

𝑋𝑞
′′−𝑋𝓁𝑠

𝑋𝑞
′ −𝑋𝓁𝑠

𝐸𝑑
′ +

𝑋𝑞
′ −𝑋𝑞

′′

𝑋𝑞
′ −𝑋𝓁𝑠

𝜓2𝑞 

𝜓0 = −𝑋𝓁𝑠𝐼0 

Stator 

Windings

Rotor Windings

Mechanical 

equations

Stator flux 

definitions
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Steady-State Operation, Results

• Eventually the dust settles and you end up with

0 = 𝑉𝑑 + 𝐼𝑑𝑅𝑠 − 𝑋𝑞𝐼𝑞  

0 = 𝑉𝑞 + 𝐼𝑞𝑅𝑠 − 𝐸𝑓𝑑 + 𝑋𝑑𝐼𝑑

• Which we can combine into the following complex equation

𝑗𝐸 − 𝑉𝑑 + 𝑗𝑉𝑞 = (𝑅𝑠 + 𝑗𝑋𝑞)(𝐼𝑑 + 𝑗𝐼𝑞)

• Where 𝐸 = 𝐸𝑓𝑑 + 𝑋𝑞 − 𝑋𝑑 𝐼𝑑 =
𝑇𝑀−𝑇𝐹𝑊

𝐼𝑞

• If you then convert back to the “network reference frame” using the 

conversions equations a few slides back, you get

𝐸𝑒𝑗𝛿 − 𝑉𝑠∠𝜃𝑠 = 𝑅𝑠 + 𝑗𝑋𝑞 𝐼𝑠∠𝜙𝑠

• In other words, knowing terminal voltage and current you can get 𝛿; then 

you can get 𝐼𝑑 and 𝐼𝑞 and from there 𝐸𝑓𝑑 and 𝑇𝑀 − 𝑇𝐹𝑊

• This is all only without saturation! We will consider that soon.
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Example, B4 Steady-State

• Assume a 100 MVA base, with the generator supplying 100 MW and 

32.86 Mvar into an infinite bus at V=1∠0 with network impedance 𝑗0.22

• Generator per-unit values are 𝑅𝑠 = 0, 𝑋𝑑 = 2.1, 𝑋𝑞 = 2, 𝑋𝑑
′ = 0.3, 𝑋𝑞

′ = 0.5

• Find the initial value of 𝛿 assuming no saturation
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Example, B4 Steady-State, Solution

• From circuit, we can calculate ҧ𝐼𝑠 = 1.0526∠ − 18.2° and ത𝑉𝑠 = 1.0946∠11.59°

𝐸𝑒𝑗𝛿 = 𝑉𝑠∠𝜃𝑠 + 𝑅𝑠 + 𝑗𝑋𝑞 𝐼𝑠∠𝜙𝑠 = ത𝑉𝑠 + 𝑗2 ҧ𝐼𝑠 = 2.814∠52.1°

• Hence 𝛿 = 52.1°

• With “reference frame transformations”

𝑉𝑑 + 𝑗𝑉𝑞 = 𝑉𝑠∠𝜃𝑠 𝑒
−𝑗 𝛿−

𝜋
2 = 1.09∠ 11.59° − 52.1° + 90° = 1.09∠49.5°

𝐼𝑑 + 𝑗𝐼𝑞 = 𝐼𝑠∠𝜙𝑠 𝑒
−𝑗 𝛿−

𝜋
2 = 1.0526∠ −18.2° − 52.1° + 90° = 1.0526∠19.7°

• We can also find other steady-state variables, for example

𝐸𝑞
′ = 𝑉𝑞 + 𝑅𝑠𝐼𝑞 + 𝑋𝑑

′ 𝐼𝑑 = 0.8326 + 0.3 ⋅ 0.9909 = 1.1299
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Multiple Time Scale Analysis

• It is important to think about which states will change faster than others. 

Start by examining the coefficients of the derivatives

– The slowest change will be in the swing equation, because 2𝐻 is bigger than the other 

constants

– The “transient time constants” 𝑇𝑑𝑜
′  and 𝑇𝑞𝑜

′  are larger values; these effects are generally 

considered slower

– The “subtransient time constants” 𝑇𝑑𝑜
′′  and 𝑇𝑞𝑜

′′  are smaller and happen faster

– But the smallest coefficients are the 
1

𝜔𝑠
 terms in the stator transient equations

• Various simplifications of the synchronous machine equations exist which 

generally assume that the faster changing variables are algebraic, using 

time scale separation
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Elimination of the Stator Transients

• First, it is convenient to define the following

  𝜓𝑑
′′ =

𝑋𝑑
′′−𝑋𝓁𝑠

𝑋𝑑
′ −𝑋𝓁𝑠

𝐸𝑞
′ +

𝑋𝑑
′ −𝑋𝑑

′′

𝑋𝑑
′ −𝑋𝓁𝑠

𝜓1𝑑    and      𝜓𝑞
′′ = −

𝑋𝑞
′′−𝑋𝓁𝑠

𝑋𝑞
′ −𝑋𝓁𝑠

𝐸𝑑
′ +

𝑋𝑞
′ −𝑋𝑞

′′

𝑋𝑞
′ −𝑋𝓁𝑠

𝜓2𝑞 

• So the algebraic equations become

             𝜓𝑑 = −𝑋𝑑
′′𝐼𝑑 +

𝑋𝑑
′′−𝑋𝓁𝑠

𝑋𝑑
′ −𝑋𝓁𝑠

𝐸𝑞
′ +

𝑋𝑑
′ −𝑋𝑑

′′

𝑋𝑑
′ −𝑋𝓁𝑠

𝜓1𝑑 = −𝑋𝑑
′′𝐼𝑑 + 1 + 𝜔 𝜓𝑑

′′ 

             𝜓𝑞 = −𝑋𝑞
′′𝐼𝑞 −

𝑋𝑞
′′−𝑋𝓁𝑠

𝑋𝑞
′ −𝑋𝓁𝑠

𝐸𝑑
′ +

𝑋𝑞
′ −𝑋𝑞

′′

𝑋𝑞
′ −𝑋𝓁𝑠

𝜓2𝑞 = −𝑋𝑞
′′𝐼𝑞 + 1 + 𝜔 𝜓𝑞

′′ 

• And so if you consider the stator transients to be so fast that 
1

𝜔𝑠
= 0

1

𝜔𝑠

𝑑𝜓𝑑

𝑑𝑡
= 𝑉𝑑 + 𝐼𝑑𝑅𝑠 + 𝜔 + 1 𝜓𝑞  0 = 𝑉𝑑 + 𝐼𝑑𝑅𝑠 − 𝑋𝑞

′′𝐼𝑞 + (1 + 𝜔)𝜓𝑞
′′

1

𝜔𝑠

𝑑𝜓𝑞

𝑑𝑡
= 𝑉𝑞 + 𝐼𝑞𝑅𝑠 − 𝜔 + 1 𝜓𝑑                                         0 = 𝑉𝑞 + 𝐼𝑞𝑅𝑠 + 𝑋𝑑

′′𝐼𝑑 − (1 + 𝜔)𝜓𝑑
′′

Stator 

Windings

New Network 

Interface 

Equations
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Model Without Stator Transients, No Saturation

0 = 𝑉𝑑 + 𝐼𝑑𝑅𝑠 − 𝑋𝑞
′′𝐼𝑞 + (1 + 𝜔)𝜓𝑞

′′ 

0 = 𝑉𝑞 + 𝐼𝑞𝑅𝑠 + 𝑋𝑑
′′𝐼𝑑 − 1 + 𝜔 𝜓𝑑

′′ 

𝑇𝑑𝑜
′ 𝑑𝐸𝑞

′

𝑑𝑡
= −𝐸𝑞

′ − 𝑋𝑑 − 𝑋𝑑
′ 𝐼𝑑 −

𝑋𝑑
′ −𝑋𝑑

′′

𝑋𝑑
′ −𝑋𝓁𝑠

2 𝜓1𝑑 + 𝑋𝑑
′ − 𝑋𝓁𝑠 𝐼𝑑 − 𝐸𝑞

′ + 𝐸𝑓𝑑 

𝑇𝑑𝑜
′′ 𝑑𝜓1𝑑

𝑑𝑡
= −𝜓1𝑑 + 𝐸𝑞

′ − 𝑋𝑑
′ − 𝑋𝓁𝑠 𝐼𝑑 

𝑇𝑞𝑜
′ 𝑑𝐸𝑑

′

𝑑𝑡
= −𝐸𝑑

′ + 𝑋𝑞 − 𝑋𝑞
′ 𝐼𝑞 −

𝑋𝑞
′ −𝑋𝑞

′ ′

𝑋𝑞
′ −𝑋𝓁𝑠

2 𝜓2𝑞 + 𝑋𝑞
′ − 𝑋𝓁𝑠 𝐼𝑞 + 𝐸𝑑

′  

𝑇𝑞𝑜
′′ 𝑑𝜓2𝑞

𝑑𝑡
= −𝜓2𝑞 − 𝐸𝑑

′ − 𝑋𝑞
′ − 𝑋𝓁𝑠 𝐼𝑞 

𝑑𝛿

𝑑𝑡
= 𝜔 ⋅ 𝜔𝑠 

2𝐻
𝑑𝜔

𝑑𝑡
= 𝑇𝑀 + 𝜓𝑞

′′𝐼𝑑 − 𝜓𝑑
′′𝐼𝑞 − 𝑇𝐹𝑊 

𝜓𝑑
′′ =

𝑋𝑑
′′−𝑋𝓁𝑠

𝑋𝑑
′ −𝑋𝓁𝑠

𝐸𝑞
′ +

𝑋𝑑
′ −𝑋𝑑

′′

𝑋𝑑
′ −𝑋𝓁𝑠

𝜓1𝑑   

𝜓𝑞
′′ = −

𝑋𝑞
′′−𝑋𝓁𝑠

𝑋𝑞
′ −𝑋𝓁𝑠

𝐸𝑑
′ +

𝑋𝑞
′ −𝑋𝑞

′′

𝑋𝑞
′ −𝑋𝓁𝑠

𝜓2𝑞 

Network Interface

Rotor Windings

Mechanical 

equations

Flux 

definitions

(We’re ignoring the zero axis 

here, which is common for 

balanced operation)
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Elimination of Subtransients

• This is known as the two-axis model and comes from assuming 

that 𝑇𝑑𝑜
′′ = 𝑇𝑞𝑜

′′ = 0 is an acceptable manifold for time separation

0 = 𝑉𝑑 + 𝐼𝑑𝑅𝑠 − 𝑋𝑞
′ 𝐼𝑞 − 1 + 𝜔 𝐸𝑑

′  

0 = 𝑉𝑞 + 𝐼𝑞𝑅𝑠 + 𝑋𝑑
′ 𝐼𝑑 − 1 + 𝜔 𝐸𝑞

′  

𝑇𝑑𝑜
′ 𝑑𝐸𝑞

′

𝑑𝑡
= −𝐸𝑞

′ − 𝑋𝑑 − 𝑋𝑑
′ 𝐼𝑑 + 𝐸𝑓𝑑 

𝑇𝑞𝑜
′ 𝑑𝐸𝑑

′

𝑑𝑡
= −𝐸𝑑

′ + 𝑋𝑞 − 𝑋𝑞
′ 𝐼𝑞 

𝑑𝛿

𝑑𝑡
= 𝜔 ⋅ 𝜔𝑠 

2𝐻
𝑑𝜔

𝑑𝑡
= 𝑇𝑀 + −𝑋𝑞

′ 𝐼𝑞 − 𝐸𝑑
′ 𝐼𝑑 − (−𝑋𝑑

′ 𝐼𝑑 + 𝐸𝑞′)𝐼𝑞 − 𝑇𝐹𝑊 

Network Interface

Rotor Windings

Mechanical 

equations
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Two-Axis Model Example

• Same example as before, with same initialization

• Assume a fault at bus 3 at time 𝑡 = 1.0, cleared by opening both lines into 

bus 3 at time 𝑡 = 1.1 seconds

Gen Bus 4 #1 Rotor Angle

Time

543210

G
en

 B
us

 4
 #

1 
Ro

to
r A

ng
le

74

72

70

68

66

64

62

60

58

56

54

52

50

48

46

44

Gen Bus 4 #1 Rotor Angle

PowerWorld case B4_TwoAxis
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Two-Axis Model Example, Viewing the States

• PowerWorld allows the generator states to be stored, such as 𝐸𝑑
′  below

Gen Bus 4 #1 Machine State\Edp

Time

543210

G
en

 B
us

 4
 #

1 
M

ac
hi

ne
 S

ta
te

\E
dp 0.56

0.54

0.52

0.5

0.48

0.46

0.44

0.42

Gen Bus 4 #1 Machine State\Edp
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Further Time Scale Elimination?

• The previous model reduces the size of the model down to six equations, 

with only four differential equations. This is sometimes called the fourth-

order model or the two-axis model.

– While not that common in industry, it does capture more details than the simpler models 

we will discuss next

• Next we can reduce the model to a third-order model often called the flux-

decay model, by assuming the q-axis transient dynamics are slow (𝑇𝑞𝑜
′ = 0)

• Then finally we can make further simplifications to connect to the classical 

model we have previously introduced
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Flux-Decay Model

• Assuming that 𝑇𝑞𝑜
′ = 0 is an acceptable manifold for time separation

0 = 𝑉𝑑 + 𝐼𝑑𝑅𝑠 − 𝑋𝑞𝐼𝑞 

0 = 𝑉𝑞 + 𝐼𝑞𝑅𝑠 + 𝑋𝑑
′ 𝐼𝑑 − 1 + 𝜔 𝐸𝑞

′  

𝑇𝑑𝑜
′ 𝑑𝐸𝑞

′

𝑑𝑡
= −𝐸𝑞

′ − 𝑋𝑑 − 𝑋𝑑
′ 𝐼𝑑 + 𝐸𝑓𝑑 

𝑑𝛿

𝑑𝑡
= 𝜔 ⋅ 𝜔𝑠 

2𝐻
𝑑𝜔

𝑑𝑡
= 𝑇𝑀 − 𝐸𝑞

′ 𝐼𝑞 − 𝑇𝐹𝑊 

Network Interface

Rotor Winding

Mechanical 

equations
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Flux-Decay Model Example

• This shows the sensitivity to changing 𝑇𝑞𝑜
′  in the two-axis model

• Two-axis model with 𝑇𝑞𝑜
′ = 0 is the same as the flux-decay model
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Toward the Classical Model 

• These last assumptions are the hardest to justify!

0 = 𝑉𝑑 + 𝐼𝑑𝑅𝑠 − 𝑋𝑞𝐼𝑞 

0 = 𝑉𝑞 + 𝐼𝑞𝑅𝑠 + 𝑋𝑑
′ 𝐼𝑑 + 𝐸𝑓𝑑  

𝑑𝛿

𝑑𝑡
= 𝜔 ⋅ 𝜔𝑠 

2𝐻
𝑑𝜔

𝑑𝑡
= 𝑇𝑀 + 𝐸𝑓𝑑𝐼𝑞 − 𝑇𝐹𝑊 

• If you apply the reference frame transformation you can get the equations 

we originally presented for the classical model (with 𝑉𝑠∠𝜃𝑠 = 𝑉𝑟 + 𝑗𝑉𝑖)
ሶ𝛿 = 𝜔 ⋅ 𝜔𝑠 

ሶ𝜔 =
1

2𝐻

𝑃𝑚

𝜔+1
−

𝐸𝑝

𝑋𝑑
′ 𝑉𝑟 sin 𝛿 − 𝑉𝑖 cos 𝛿  

𝐼𝑟 =
1

𝑋𝑑
′ −𝑉𝑖 + 𝐸𝑝 sin 𝛿  

𝐼𝑖 =
1

𝑋𝑑
′ 𝑉𝑟 − 𝐸𝑝 cos 𝛿  

Network Interface

Mechanical 

equations

Here, we use 𝐸𝑝 instead of 𝐸𝑓𝑑 and make the 

common assumption for a classical model 

that 𝑋𝑞 = 𝑋𝑑 = 𝑋𝑑
′
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Saturation

• Relationship between current and flux linkage 

in magnetic materials is not linear

• Often generators are designed to be operated 

near saturation

• There is also hysteresis, meaning residual 

magnetism when current goes to zero (design 

goal to reduce)

Image Source: 

en.wikipedia.org/wiki/Saturation_(magnetic)
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Saturation Models

• Tradeoff between accuracy and complexity

• One simple approach is to replace

𝑇𝑑𝑜
′

𝑑𝐸𝑞
′

𝑑𝑡
= −𝐸𝑞

′ − 𝑋𝑑 − 𝑋𝑑
′ 𝐼𝑑 + 𝐸𝑓𝑑

• With

𝑇𝑑𝑜
′

𝑑𝐸𝑞
′

𝑑𝑡
= −𝐸𝑞

′ − 𝑋𝑑 − 𝑋𝑑
′ 𝐼𝑑 − 𝑆𝑒(𝐸𝑞

′ ) + 𝐸𝑓𝑑

• Where 𝑆𝑒 is a quadratic function

𝑆𝑒 𝐸𝑞
′ = 𝐵 𝐸𝑞

′ − 𝐴
2

• Usually specified at two points, such as 𝑆𝑒(1.0) and 𝑆𝑒(1.2)
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Saturation Example

• Given values 𝑆𝐸10 = 0.1 and 𝑆𝐸12 = 0.5, what are the values of A and B for 

the quadratic saturation model?

• Solution

0.1 = 𝐵 1.0 − 𝐴 2   and   0.5 = 𝐵 1.2 − 𝐴 2

• Solve these two equations simultaneously and get two possibilities

            𝐴 = 0.838, 𝐵 = 3.820   and   𝐴 = 1.0618, 𝐵 = 26.2

• The first one is physically meaningful, as 𝐴 should be less than 1
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Other Saturation Modeling Considerations

• Alternative models include scaled quadratic (same thing but divided by 𝐸𝑞′) 

and exponential 𝑆𝑒 𝐸𝑞
′ = 𝐴𝑒𝐵𝐸𝑞

′

• In practice there are special cases, sometimes cause by user typos

– What to do if Se(1.2) < Se(1.0)?

– What to do if Se(1.0) = 0 and Se(1.2) ≠ 0

– What to do if Se(1.0) = Se(1.2) ≠ 0
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Introduction to GENSAL

• GENSAL is the first industry standard model we 

will study. It is a good introduction to subtransient 

models and models that include saturation

• It was designed going back to the ‘70s primarily 

for salient pole machines, such as hydro

• 5th order, saturation affects the d-axis only

• Very common in industry studies until about 2010-

2015, in which it began to be replaced by newer 

models
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GENSAL Definition

• Block diagram shows 

rotor equations

• Same machine interface 

equations and mechanical 

equations as the “model 

without stator transients” 

we developed above.

• For initialization, 

saturation only impacts 

calculation of 𝐸𝑓𝑑 
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GENSAL Example

• Assume same system as before with same common generator parameters: 

H=3.0, D=0, Ra = 0, Xd = 2.1, Xq = 2.0, X'd = 0.3, X"d=X"q=0.2, Xl = 0.13, T'do 

= 7.0, T"do = 0.07, T"qo =0.07, S(1.0) =0, and S(1.2) = 0.

• Same terminal conditions as before, resulting in 𝛿 = 52.1°

• Then we again get 𝑉𝑑 = 0.7107, 𝑉𝑞 = 0.8326, 𝐼𝑑 = 0.9909, 𝐼𝑞 = 0.3553

• Now, use the network interface equations to get 𝜓𝑑
′′, 𝜓𝑞

′′

                                     0 = 𝑉𝑑 + 𝐼𝑑𝑅𝑠 − 𝑋𝑞
′′𝐼𝑞 + (1 + 𝜔)𝜓𝑞

′′ 

0 = 𝑉𝑞 + 𝐼𝑞𝑅𝑠 + 𝑋𝑑
′′𝐼𝑑 − 1 + 𝜔 𝜓𝑑

′′

• 𝜓𝑑
′′ = 1.031, 𝜓𝑞

′′ = −0.6396

• Then use the steady-state differential equations to find

 𝜓𝑞
′′ = −0.6396, 𝐸𝑞

′ = 1.1298, 𝜓𝑑
′ = 0.9614

On the d-axis you need 

to solve two linear 

equations for two 

unknowns
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GENSAL Example, Solution

0.4118

0.5882

0.17 Id=0.9909

d”=1.031

1.8

Eq’=1.1298

d’=0.9614

3.460

Efd = 1.1298+1.8*0.991=2.912

Iq=0.3553
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GENSAL Example 2

• Now repeat the initialization with the saturation values specified before, 

𝑆𝐸10 = 0.1 and 𝑆𝐸12 = 0.5

• Recall, we found 𝐴 = 0.838 and 𝐵 = 3.82

• Now, use the block diagram and recognize that the derivative term before 

𝐸𝑞
′  is zero

𝐸𝑓𝑑 = 𝐸𝑞
′ 1 + 𝑆𝑒 𝐸𝑞

′ + 𝑋𝑑 − 𝑋𝑑
′ 𝐼𝑑

= 1.1298 1 + 𝐵 1.1298 − 𝐴 2 + 2.1 − 0.3 0.9909
= 1.1298 1 + 3.82 1.1298 − 0.838 2 + 1.784 = 3.28

• 𝐸𝑓𝑑 is the only initialized variable that is different because of saturation
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GENSAL Saturation Values from Large Case

• Essentially all 

GENSAL generators 

have saturation 

values
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Machine Models

• Common synchronous machine models

– Classical – second order primarily for teaching purposes

– Flux-decay – simplified third order model

– Two-axis – simplified fourth order model

– GENSAL – originally for salient pole generators, now becoming obsolete

– GENROU – for round-rotor models

– GENTPF – first replacement for GENSAL

– GENTPJ – second replacement for GENSAL

– GENQEC – third and current replacement for GENSAL, can also replace GENROU
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