ECEN 667 Power System Stability

Lecture 6: Synchronous Machine Modeling, Part 2

Prof. Adam Birchfield

Dept. of Electrical and Computer Engineering

Texas A&M University

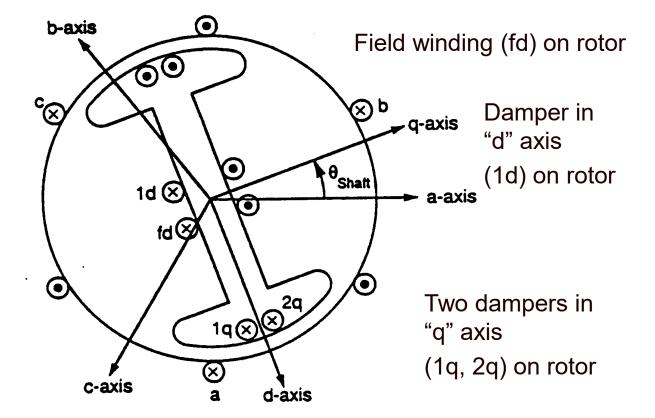
abirchfield@tamu.edu

Announcements

- Homework Assignment #2 is due Thursday, Sept. 25th at 8 AM. Email me your solution as a single PDF.
- Read book chapters 3, 4, and 5
- Review the slides and PowerWorld examples

The Main Diagram

3∮ bal. windings (a,b,c) – stator



Full Per-Unit Model, Labeled

$$\frac{1}{\omega_{s}} \frac{d\psi_{d}}{dt} = V_{d} + I_{d}R_{s} + (\omega + 1)\psi_{q}$$

$$\frac{1}{\omega_{s}} \frac{d\psi_{q}}{dt} = V_{q} + I_{q}R_{s} - (\omega + 1)\psi_{d}$$
Stator
Windings
$$\frac{1}{\omega_{s}} \frac{d\psi_{0}}{dt} = V_{0} + I_{0}R_{s}$$

$$T'_{do} \frac{dE'_q}{dt} = -E'_q - (X_d - X'_d) \left[I_d - \frac{(X'_d - X''_d)}{(X'_d - X_{\ell s})^2} (\psi_{1d} + (X'_d - X_{\ell s}) I_d - E'_q) \right] + E_{fd}$$

$$T''_{do} \frac{d\psi_{1d}}{dt} = -\psi_{1d} + E'_q - (X'_d - X_{\ell s}) I_d \qquad \text{Rotor Windings}$$

$$T'_{qo}\frac{dE'_d}{dt} = -E'_d + (X_q - X'_q) \left[I_q - \frac{X'_q - X'_q'}{(X'_q - X_{\ell s})^2} (\psi_{2q} + (X'_q - X_{\ell s})I_q + E'_d) \right]$$

$$T_{qo}^{\prime\prime} \frac{d\psi_{2q}}{dt} = -\psi_{2q} - E_d^{\prime} - (X_q^{\prime} - X_{\ell s})I_q$$

$$\frac{d\delta}{dt} = \omega \cdot \omega_{S}$$

$$2H\frac{d\omega}{dt} = T_{M} + (\psi_{q}I_{d} - \psi_{d}I_{q}) - T_{FW}$$

Mechanical equations

Stator flux definitions

$$\psi_{d} = -X_{d}^{"}I_{d} + \frac{X_{d}^{"}-X_{\ell s}}{X_{d}^{'}-X_{\ell s}}E_{q}^{'} + \frac{X_{d}^{'}-X_{d}^{"}}{X_{d}^{'}-X_{\ell s}}\psi_{1d}$$

$$\psi_{q} = -X_{q}^{"}I_{q} - \frac{X_{q}^{"}-X_{\ell s}}{X_{q}^{'}-X_{\ell s}}E_{d}^{'} + \frac{X_{q}^{'}-X_{q}^{"}}{X_{q}^{'}-X_{\ell s}}\psi_{2q}$$

$$\psi_{0} = -X_{\ell s}I_{0}$$

Balanced Operation

Consider a balanced set of scaled sinusoidal voltages and currents

$$V_a = \sqrt{2} V_S \cos(\omega_S t + \theta_S)$$

$$I_a = \sqrt{2} I_S \cos(\omega_S t + \phi_S)$$

$$V_b = \sqrt{2} V_S \cos(\omega_S t + \theta_S - \frac{2\pi}{3})$$

$$I_b = \sqrt{2} I_S \cos(\omega_S t + \phi_S - \frac{2\pi}{3})$$

$$V_c = \sqrt{2} V_S \cos(\omega_S t + \theta_S + \frac{2\pi}{3})$$

$$I_c = \sqrt{2} I_S \cos(\omega_S t + \phi_S + \frac{2\pi}{3})$$

• Applying Park's transformation and the definition of δ we get

$$V_d = V_S \sin(\delta - \theta_S)$$

$$I_d = I_S \sin(\delta - \phi_S)$$

$$V_q = V_S \cos(\delta - \theta_S)$$

$$I_q = I_S \cos(\delta - \phi_S)$$

Which we can write compactly as two complex equations

$$(V_d + jV_q)e^{j\left(\delta - \frac{\pi}{2}\right)} = V_s \angle \theta_s$$
$$(I_d + jI_q)e^{j\left(\delta - \frac{\pi}{2}\right)} = I_s \angle \phi_s$$

We use this as our "reference frame transformation"
Instead of the full Park's transformation in stability studies

Steady-State Operation

$$0 = V_d + I_d R_s + (\omega + 1) \psi_q$$

$$0 = V_q + I_q R_s - (\omega + 1)\psi_d$$

$$0 = V_0 + I_0 R_s$$

Stator

Windings

$$0 = -E'_q - (X_d - X'_d) \left[I_d - \frac{(X'_d - X''_d)}{(X'_d - X_{\ell s})^2} (\psi_{1d} + (X'_d - X_{\ell s}) I_d - E'_q) \right] + E_{fd}$$

$$0 = -\psi_{1d} + E'_q - (X'_d - X_{\ell s})I_d$$

Rotor Windings

$$0 = -E'_d + (X_q - X'_q) \left[I_q - \frac{x'_q - x''_q}{(x'_q - X_{\ell s})^2} (\psi_{2q} + (X'_q - X_{\ell s}) I_q + E'_d) \right]$$

$$0 = -\psi_{2q} - E'_d - (X'_q - X_{\ell s})I_q$$

$$0 = \omega \cdot \omega_s$$

$$0 = T_M + (\psi_a I_d - \psi_d I_a) - T_{FW}$$

Mechanical equations

$$\psi_d = -X_d'' I_d + \frac{X_d'' - X_{\ell s}}{X_d' - X_{\ell s}} E_q' + \frac{X_d' - X_d''}{X_d' - X_{\ell s}} \psi_{1d}$$

$$\psi_q = -X_q'' I_q - \frac{X_q'' - X_{\ell s}}{X_q' - X_{\ell s}} E_d' + \frac{X_q' - X_q''}{X_q' - X_{\ell s}} \psi_{2q}$$

$$\psi_0 = -X_{\ell s}I_0$$

Stator flux definitions

For steady-state operation, Treat all derivatives as zero.

Then things begin to cancel...

Steady-State Operation, Results

Eventually the dust settles and you end up with

$$0 = V_d + I_d R_s - X_q I_q$$

$$0 = V_q + I_q R_s - E_{fd} + X_d I_d$$

Which we can combine into the following complex equation

$$jE - (V_d + jV_q) = (R_s + jX_q)(I_d + jI_q)$$

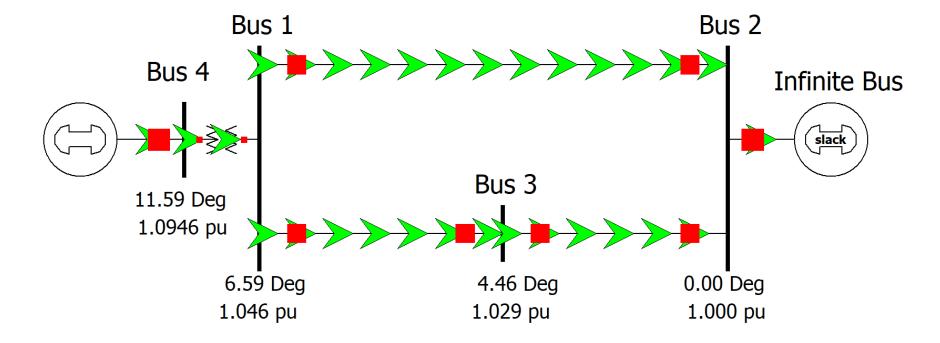
- Where $E = E_{fd} + (X_q X_d)I_d = \frac{T_M T_{FW}}{I_q}$
- If you then convert back to the "network reference frame" using the conversions equations a few slides back, you get

$$Ee^{j\delta} - V_s \angle \theta_s = (R_s + jX_q)(I_s \angle \phi_s)$$

- In other words, knowing terminal voltage and current you can get δ ; then you can get I_d and I_q and from there E_{fd} and $(T_M T_{FW})$
- This is all only without saturation! We will consider that soon.

Example, B4 Steady-State

- Assume a 100 MVA base, with the generator supplying 100 MW and 32.86 Mvar into an infinite bus at V=1∠0 with network impedance j0.22
- Generator per-unit values are $R_s = 0$, $X_d = 2.1$, $X_q = 2$, $X_d' = 0.3$, $X_q' = 0.5$
- Find the initial value of δ assuming no saturation



Example, B4 Steady-State, Solution

- From circuit, we can calculate $\bar{I}_s = 1.0526 \angle 18.2^\circ$ and $\bar{V}_s = 1.0946 \angle 11.59^\circ$ $Ee^{j\delta} = V_s \angle \theta_s + (R_s + jX_q)(I_s \angle \phi_s) = \bar{V}_s + j2 \,\bar{I}_s = 2.814 \angle 52.1^\circ$
- Hence $\delta = 52.1^{\circ}$
- With "reference frame transformations"

$$V_d + jV_q = (V_s \angle \theta_s)e^{-j\left(\delta - \frac{\pi}{2}\right)} = 1.09 \angle (11.59^\circ - 52.1^\circ + 90^\circ) = 1.09 \angle 49.5^\circ$$

$$I_d + jI_q = (I_s \angle \phi_s)e^{-j\left(\delta - \frac{\pi}{2}\right)} = 1.0526 \angle (-18.2^\circ - 52.1^\circ + 90^\circ) = 1.0526 \angle 19.7^\circ$$

• We can also find other steady-state variables, for example $E_q' = V_q + R_s I_q + X_d' I_d = 0.8326 + 0.3 \cdot 0.9909 = 1.1299$

Multiple Time Scale Analysis

- It is important to think about which states will change faster than others.
 Start by examining the coefficients of the derivatives
 - The slowest change will be in the swing equation, because 2H is bigger than the other constants
 - The "transient time constants" T'_{do} and T'_{qo} are larger values; these effects are generally considered slower
 - The "subtransient time constants" T''_{do} and T''_{ao} are smaller and happen faster
 - But the smallest coefficients are the $\frac{1}{\omega_s}$ terms in the stator transient equations
- Various simplifications of the synchronous machine equations exist which generally assume that the faster changing variables are algebraic, using time scale separation

Elimination of the Stator Transients

First, it is convenient to define the following

$$\psi_d'' = \frac{X_d'' - X_{\ell s}}{X_d' - X_{\ell s}} E_q' + \frac{X_d' - X_d''}{X_d' - X_{\ell s}} \psi_{1d} \quad \text{and} \quad \psi_q'' = -\frac{X_q'' - X_{\ell s}}{X_q' - X_{\ell s}} E_d' + \frac{X_q' - X_q''}{X_q' - X_{\ell s}} \psi_{2q}$$

So the algebraic equations become

$$\psi_{d} = -X_{d}^{"}I_{d} + \frac{X_{d}^{"} - X_{\ell S}}{X_{d}^{'} - X_{\ell S}}E_{q}^{'} + \frac{X_{d}^{'} - X_{d}^{"}}{X_{d}^{'} - X_{\ell S}}\psi_{1d} = -X_{d}^{"}I_{d} + (1 + \omega)\psi_{d}^{"}$$

$$\psi_{q} = -X_{q}^{"}I_{q} - \frac{X_{q}^{"} - X_{\ell S}}{X_{q}^{'} - X_{\ell S}}E_{d}^{'} + \frac{X_{q}^{'} - X_{q}^{"}}{X_{q}^{'} - X_{\ell S}}\psi_{2q} = -X_{q}^{"}I_{q} + (1 + \omega)\psi_{q}^{"}$$

And so if you consider the stator transients to be so fast that $\frac{1}{\omega_s} = 0$

$$\frac{1}{\omega_s} \frac{d\psi_d}{dt} = V_d + I_d R_s + (\omega + 1)\psi_q$$

$$\frac{1}{\omega_s} \frac{d\psi_q}{dt} = V_q + I_q R_s - (\omega + 1)\psi_d$$
Stator
Windings
$$0 = V_d + I_d R_s - X_q'' I_q + (1 + \omega)\psi_q''$$

$$0 = V_q + I_q R_s + X_d'' I_d - (1 + \omega)\psi_d''$$

$$0 = V_d + I_d R_s - X_q'' I_q + (1 + \omega) \psi_q''$$

$$0 = V_q + I_q R_s + X_d'' I_d - (1 + \omega) \psi_d''$$

New Network Interface **Equations**

Model Without Stator Transients, No Saturation

$$0 = V_d + I_d R_s - X_q'' I_q + (1 + \omega) \psi_q''$$

$$0 = V_q + I_q R_s + X_d'' I_d - (1 + \omega) \psi_d''$$

Network Interface

$$T'_{do} \frac{dE'_q}{dt} = -E'_q - (X_d - X'_d) \left[I_d - \frac{(X'_d - X''_d)}{(X'_d - X_{\ell s})^2} (\psi_{1d} + (X'_d - X_{\ell s}) I_d - E'_q) \right] + E_{fd}$$

$$T_{do}^{"} \frac{d\psi_{1d}}{dt} = -\psi_{1d} + E_q' - (X_d' - X_{\ell S})I_d$$

Rotor Windings

$$T'_{qo} \frac{dE'_d}{dt} = -E'_d + (X_q - X'_q) \left[I_q - \frac{X'_q - X'_q}{(X'_q - X_{\ell s})^2} (\psi_{2q} + (X'_q - X_{\ell s}) I_q + E'_d) \right]$$

$$T_{qo}^{"} \frac{d\psi_{2q}}{dt} = -\psi_{2q} - E_d' - (X_q' - X_{\ell s})I_q$$

$$\frac{d\delta}{dt} = \omega \cdot \omega_{\rm S}$$

Mechanical equations

$$2H\frac{d\omega}{dt} = T_M + (\psi_q^{"}I_d - \psi_d^{"}I_q) - T_{FW}$$

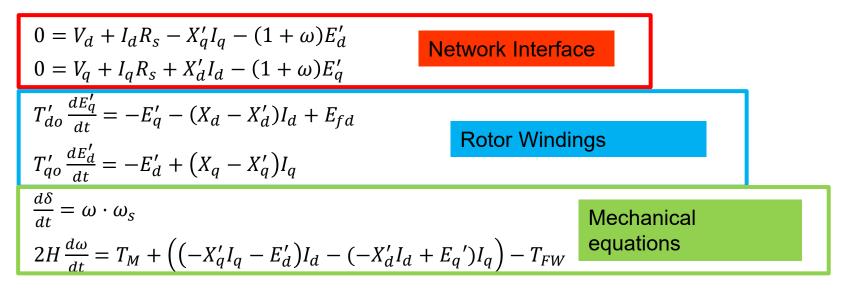
$$\psi_d^{"} = \frac{X_d^{"} - X_{\ell s}}{X_d^{'} - X_{\ell s}} E_q^{"} + \frac{X_d^{'} - X_d^{"}}{X_d^{'} - X_{\ell s}} \psi_{1d}$$

$$\psi_q^{\prime\prime} = -rac{X_q^{\prime\prime} - X_{\ell s}}{X_q^{\prime} - X_{\ell s}} E_d^{\prime} + rac{X_q^{\prime} - X_q^{\prime\prime}}{X_q^{\prime} - X_{\ell s}} \psi_{2q}$$
 Flux definitions

(We're ignoring the zero axis here, which is common for balanced operation)

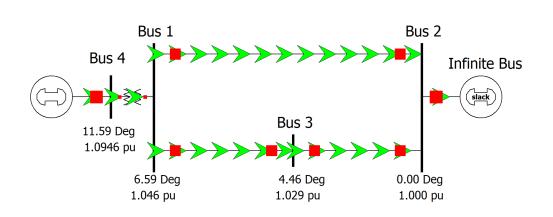
Elimination of Subtransients

• This is known as the two-axis model and comes from assuming that $T_{do}^{\prime\prime}=T_{qo}^{\prime\prime}=0$ is an acceptable manifold for time separation



Two-Axis Model Example

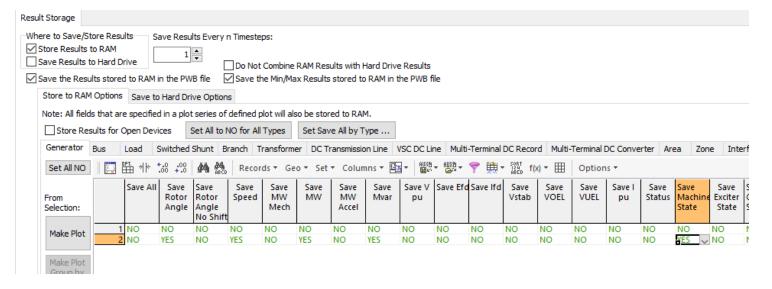
- Same example as before, with same initialization
- Assume a fault at bus 3 at time t = 1.0, cleared by opening both lines into bus 3 at time t = 1.1 seconds

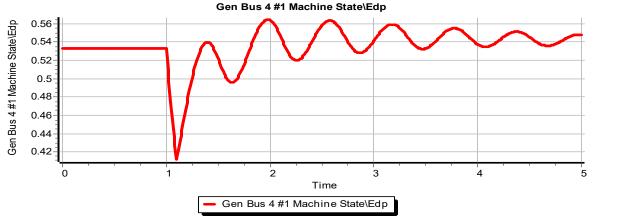


PowerWorld case B4_TwoAxis

Two-Axis Model Example, Viewing the States

• PowerWorld allows the generator states to be stored, such as E'_d below



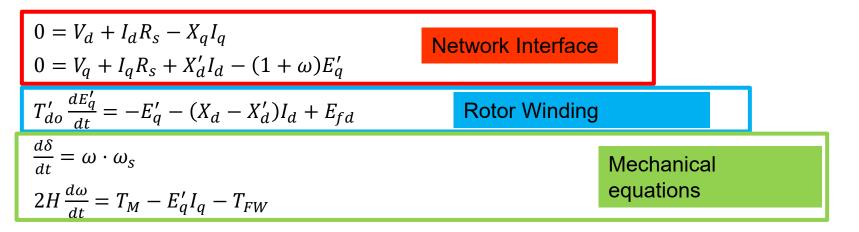


Further Time Scale Elimination?

- The previous model reduces the size of the model down to six equations, with only four differential equations. This is sometimes called the fourthorder model or the two-axis model.
 - While not that common in industry, it does capture more details than the simpler models we will discuss next
- Next we can reduce the model to a third-order model often called the flux-decay model, by assuming the q-axis transient dynamics are slow $(T'_{qo} = 0)$
- Then finally we can make further simplifications to connect to the classical model we have previously introduced

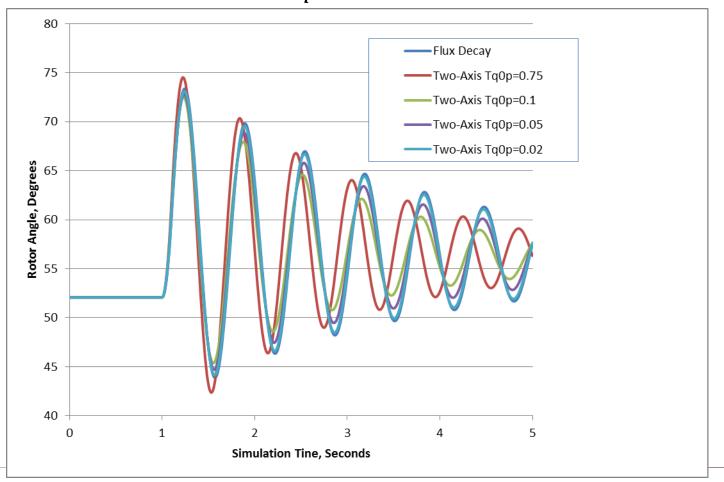
Flux-Decay Model

• Assuming that $T'_{qo} = 0$ is an acceptable manifold for time separation



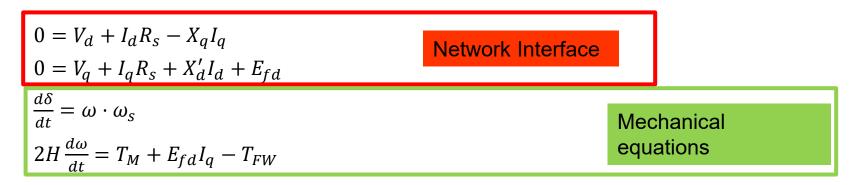
Flux-Decay Model Example

- This shows the sensitivity to changing T'_{qo} in the two-axis model
- Two-axis model with $T'_{qo} = 0$ is the same as the flux-decay model



Toward the Classical Model

These last assumptions are the hardest to justify!



• If you apply the reference frame transformation you can get the equations we originally presented for the classical model (with $V_s \angle \theta_s = V_r + jV_i$)

$$\dot{\delta} = \omega \cdot \omega_{S}$$

$$\dot{\omega} = \frac{1}{2H} \left(\frac{P_{m}}{\omega + 1} - \frac{E_{p}}{X'_{d}} (V_{r} \sin \delta - V_{i} \cos \delta) \right)$$

$$I_{r} = \frac{1}{X'_{d}} \left(-V_{i} + E_{p} \sin \delta \right)$$

$$I_{i} = \frac{1}{X'_{d}} \left(V_{r} - E_{p} \cos \delta \right)$$

Here, we use E_p instead of E_{fd} and make the common assumption for a classical model that $X_q = X_d = X_d^\prime$

Saturation

- Relationship between current and flux linkage in magnetic materials is not linear
- Often generators are designed to be operated near saturation
- There is also hysteresis, meaning residual magnetism when current goes to zero (design goal to reduce)



Image Source: en.wikipedia.org/wiki/Saturation_(magnetic)

Saturation Models

- Tradeoff between accuracy and complexity
- One simple approach is to replace

$$T'_{do} \frac{dE'_q}{dt} = -E'_q - (X_d - X'_d)I_d + E_{fd}$$

With

$$T'_{do} \frac{dE'_q}{dt} = -E'_q - (X_d - X'_d)I_d - Se(E'_q) + E_{fd}$$

Where Se is a quadratic function

$$Se(E_q') = B(E_q' - A)^2$$

• Usually specified at two points, such as Se(1.0) and Se(1.2)

Saturation Example

- Given values SE10 = 0.1 and SE12 = 0.5, what are the values of A and B for the quadratic saturation model?
- Solution

$$0.1 = B(1.0 - A)^2$$
 and $0.5 = B(1.2 - A)^2$

Solve these two equations simultaneously and get two possibilities

$$A = 0.838, B = 3.820$$
 and $A = 1.0618, B = 26.2$

The first one is physically meaningful, as A should be less than 1

Other Saturation Modeling Considerations

- Alternative models include scaled quadratic (same thing but divided by $E_q{}'$) and exponential $Se(E_q{}') = Ae^{BE_q{}'}$
- In practice there are special cases, sometimes cause by user typos
 - What to do if Se(1.2) < Se(1.0)?</p>
 - What to do if Se(1.0) = 0 and Se(1.2) \neq 0
 - What to do if Se(1.0) = Se(1.2) \neq 0

SIANDARDS

Introduction to GENSAL

AM

- GENSAL is the first industry standard model we will study. It is a good introduction to subtransient models and models that include saturation
- It was designed going back to the '70s primarily for salient pole machines, such as hydro
- 5th order, saturation affects the d-axis only
- Very common in industry studies until about 2010-2015, in which it began to be replaced by newer models

IEEE Guide for Synchronous Generator Modeling Practices and Parameter Verification with Applications in Power System Stability Analyses

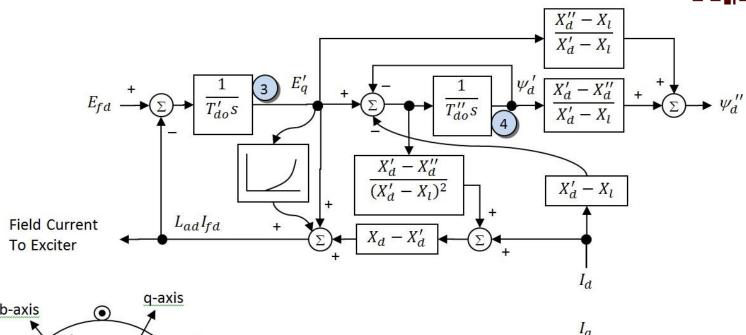
IEEE Power and Energy Society

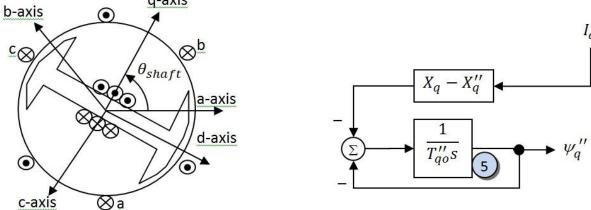
Developed by the Electric Machinery Committee

IEEE Std 1110™-2019 (Revision of IEEE Std 1110-2002

GENSAL Definition

- Block diagram shows rotor equations
- Same machine interface equations and mechanical equations as the "model without stator transients" we developed above.
- For initialization, saturation only impacts calculation of E_{fd}





GENSAL Example

- Assume same system as before with same common generator parameters: H=3.0, D=0, $R_a = 0$, $X_d = 2.1$, $X_q = 2.0$, $X'_d = 0.3$, $X''_d = X''_q = 0.2$, $X_l = 0.13$, $T'_{do} = 7.0$, $T''_{do} = 0.07$, $T''_{go} = 0.07$, S(1.0) = 0, and S(1.2) = 0.
- Same terminal conditions as before, resulting in $\delta = 52.1^{\circ}$
- Then we again get $V_d = 0.7107$, $V_q = 0.8326$, $I_d = 0.9909$, $I_q = 0.3553$
- Now, use the network interface equations to get $\psi_d^{\prime\prime}$, $\psi_q^{\prime\prime}$

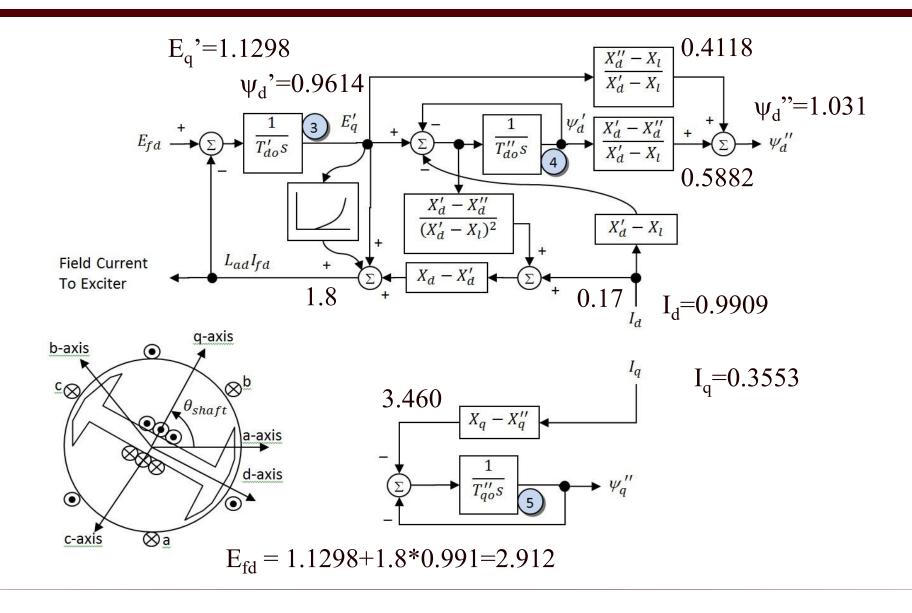
$$0 = V_d + I_d R_s - X_q'' I_q + (1 + \omega) \psi_q''$$

$$0 = V_q + I_q R_s + X_d'' I_d - (1 + \omega) \psi_d''$$

- $\psi_d^{\prime\prime} = 1.031, \psi_a^{\prime\prime} = -0.6396$
- Then use the steady-state differential equations to find $\psi_q^{\prime\prime}=-0.6396,\,E_q^\prime=1.1298,\psi_d^\prime=0.9614$

On the d-axis you need to solve two linear equations for two unknowns

GENSAL Example, Solution



GENSAL Example 2

- Now repeat the initialization with the saturation values specified before, SE10 = 0.1 and SE12 = 0.5
- Recall, we found A = 0.838 and B = 3.82
- Now, use the block diagram and recognize that the derivative term before E'_a is zero

$$E_{fd} = E'_q \left(1 + Se(E'_q) \right) + (X_d - X'_d)I_d$$

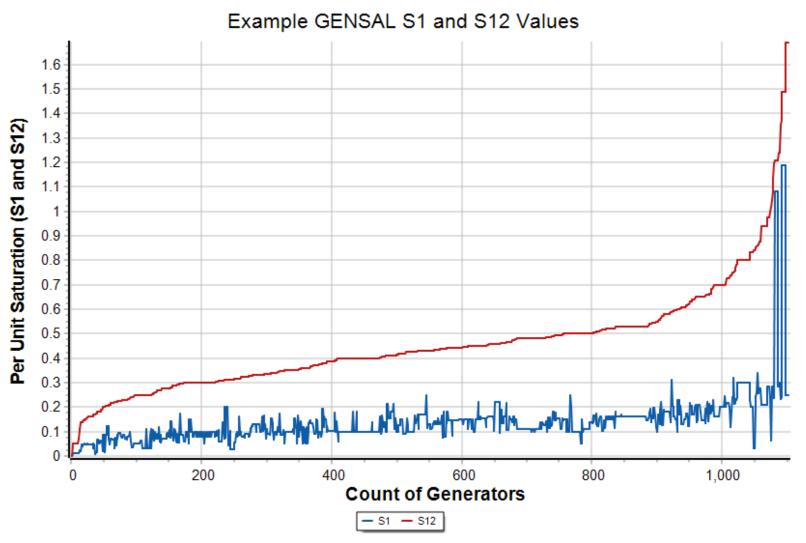
$$= 1.1298(1 + B(1.1298 - A)^2) + (2.1 - 0.3)(0.9909)$$

$$= 1.1298(1 + 3.82(1.1298 - 0.838)^2) + 1.784 = 3.28$$

• E_{fd} is the only initialized variable that is different because of saturation

GENSAL Saturation Values from Large Case

 Essentially all GENSAL generators have saturation values



Machine Models

- Common synchronous machine models
 - Classical second order primarily for teaching purposes
 - Flux-decay simplified third order model
 - Two-axis simplified fourth order model
 - GENSAL originally for salient pole generators, now becoming obsolete
 - GENROU for round-rotor models
 - GENTPF first replacement for GENSAL
 - GENTPJ second replacement for GENSAL
 - GENQEC third and current replacement for GENSAL, can also replace GENROU