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Announcements

T
« Homework Assignment #2 is due Thursday, Sept. 25t at 8 AM. Email me @
your solution as a single PDF.

« Read book chapters 3, 4, and 5
 Review the slides and Power\World examples




The Main Diagram

3¢ bal. windings (a,b,c) — stator

Field winding (fd) on rotor

b

Damper in
“‘d” axis
(1d) on rotor

g-axis

— 3-axis

Two dampers in

g’ axis
(19, 2q) on rotor

c-axis
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Full Per-Unit Model, Labeled

1 dy

w—sd—f = Vg + IzRs + (0 + DY,
1 dg _

w_s? = Vq + IqRS - ((1) + 1)1/)d
1 dy

a)_sd_to == VO + IORS

, dEg ' . Xg—Xg : '
Tdod_tq = _Eq - (Xd - Xd) {Id - ( ¢ d)z (lpld + (Xd - X{’s)ld - Eq)‘ + Efd

(Xg—Xes

r d ! /
Tao % = =Yg+ Ej — (Xg — Xps)lg

T %56 = B2+ (g = 10D |1y = 2 (g + (04 = Xe ) + B2)
(Xg—Xes)
Téé % = —Ypq — Eq— (Xcly - X{’s)lq
ds
a @ Ws Mechanical
equations

d
2Hd—(: =Ty + (Yola — Valy) — Trw

Stator flux definitions

XH_X{) x!_x"
Yg = —Xglg +2——E; +=—%194
Xq—Xops Xqa—Xrs
x!"_x x! _x!
—_ i q €S 1 q—4q
l/)q - _Xq Iq T X' _x Ed + X' _x lqu
q—24s q—24Ls

Yo = —Xpsly
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Balanced Operation

« Consider a balanced set of scaled sinusoidal voltages and currents

V, =2V, cos(wst + 6)

vy =\/§Vscos(wst+95——

Zn)
3

VC=\/7V9cos(a)St+95+2?n)

« Applying Park’s transformation and the definition of § we get

V; = V,sin(é — 0,)
V, = Vs cos(6 — 6s)

I, =2 I cos(wst + ¢p5)

I, =2 I cos (wst + ¢, —2?”)

2T

I. =+/2 I cos (wst + ¢ +?)

I; = I sin(§ — ¢,)
I, =I5 cos(6 — ¢s)

 Which we can write compactly as two complex equations

(V4 +jvq)ef(5‘§) = V20, )

(I + jI,)e’ (5-3) = 126,

>

We use this as our “reference frame transformation”
Instead of the full Park’s transformation in stability studies

d
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Steady-State Operation

0= Vd + IdRS + ((1) + 1)1'bq
— (@ + 1)y

0=V, +I,R;
0 - VO +IORS

0=—-E;—(Xq—Xg) [Id

0=—Y1q +Eqg— (X5 —Xps)ly

0=—E;+ (X, — q)[

(Xg—Xes

0=—1,q — Eg— (Xclz — X{’s)lq

m (=X — X1 — q)] + Efq

M&Jl + Edﬂ

0=w- wg

O = TM + (ll)qld —l/)dl )

ha = —X11, + % _)’;f’ EL +
— _y! _ Xq _st

l/)q - Xq Iq Xfll_XfS Ed

Yo = —Xpsly

- TFW

Xg—

xg
XX 1/)1d

x!—x!
q CI ¢2q

Mechanical
equations

Stator flux
definitions

?

For steady-state operation,
Treat all derivatives as zero.

Then things begin to cancel...




Steady-State Operation, Results

« Eventually the dust settles and you end up with
0=Vy+1;R; — X1,
0=V, +1,Rs — Erq + X4l
« Which we can combine into the following complex equation
JE = (Va +jVg) = (Rs +jXg)Ua + jlg)

» Where E = Erg + (Xg — Xg)la = TM;QTFW

« If you then convert back to the “network reference frame” using the
conversions equations a few slides back, you get

E€j6 — VSLHS — (Rs +jXq)(ISL¢S)

* In other words, knowing terminal voltage and current you can get §; then
you can get I; and I, and from there E¢; and (T, — Try )

* This is all only without saturation! We will consider that soon.
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Example, B4 Steady-State

T
 Assume a 100 MVA base, with the generator supplying 100 MW and @
32.86 Mvar into an infinite bus at V=140 with network impedance j0.22

* Generator per-unit values are R = 0,X; = 2.1,X, = 2,X; = 0.3,X; = 0.5
« Find the initial value of § assuming no saturation

Bus 1 Bus 2
Bus4 PIR>>>>>>> > > Infinite Bus

11.59 Deg Bus 3
6.59 Deg 4.46 Deg 0.00 Deg

1.046 pu 1.029 pu 1.000 pu




Example, B4 Steady-State, Solution
T
« From circuit, we can calculate I, = 1.05262 — 18.2° and V, = 1.0946211.59° @
Eel® =V,20, + (Rs + jX, ) Ustps) =V, + j2 [ = 2.814252.1°

e Hence § =52.1°

« With “reference frame transformations”
VA

Vg +jV, = (V.20.)e7(573) = 1.092(11.59° — 52.1° + 90°) = 1.09.,49.5°
T

Iy +jl, = (ISAqu)e_j(5_7) = 1.05262(—18.2° — 52.1° + 90°) = 1.0526219.7°

 We can also find other steady-state variables, for example
Eq =V, + Rsly + X;3l; = 0.8326 + 0.3 - 0.9909 = 1.1299




Multiple Time Scale Analysis

It is important to think about which states will change faster than others.

Start by examining the coefficients of the derivatives

The slowest change will be in the swing equation, because 2H is bigger than the other
constants

The “transient time constants” T, and Ty, are larger values; these effects are generally
considered slower
The “subtransient time constants” T, and T, are smaller and happen faster

But the smallest coefficients are the — terms in the stator transient equations

Wg

Various simplifications of the synchronous machine equations exist which

generally assume that the faster changing variables are algebraic, using
time scale separation

10
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Elimination of the Stator Transients

« First, it is convenient to define the following

W = Xd_;‘j: E, +%¢1d and Y = ’;‘7 f Xq ¢2q
« So the algebraic equatlons become
Yo = —XUI, +2 _)’(‘:’ E. + Xd XqmXg T ¥a = —Xila + (L + @)Yy
g = X1, —X ;:jEd + Xa- X‘,I,ll)zq —X!I, + (1 + )yl
* And so if you consider the stator transients to be so fast that— =0

Wg

— 2 =y, + I4R, + (0 + Dy I 0=Vy+I4Rs — X5 Iy + (1 + w)ipy
;d;iq V, + IR — (0 + Liq 0=V, + IR + Xj1qs — (1 + w)py

Al
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Model Without Stator Transients, No Saturation

?

DT T L TR Nework Interface
0=V, +1;Rs + X51s — (1 + w)py

dE} , x,-x} , ,
Tdo q = —E; — (Xg — X3) [Id (( ,d_X: )2 (Y10 + (XG — Xos)g — Eq)] + Efq
d S
4 d
Tao Tt = 1+ Bq = Xa = Xeo)la Rotor Windings
/ XI_X/’ c . . :
T’ _E" 4+ (x 1 _ZXa"%q + (X' =X, ). +E ] (We're ignoring the zero axis
dt @t (X q)[ (X5-X¢s)° (V2q + (Xg = Xes)lq + Fa) here, which is common for
., A, , balanced operation)
Tqo dtq ~P2q — - (Xq o X%’s)lq
o _
dt S Mechanical

d 14 " i
2H—w =Ty + (l/Jq I; — lleIq) - equations

X -X X X
no__ d s 1 a_ d
Ya =5, Eat 3 -V1a
d—44¢s d
7] Flux
Xq X#S 7 Xq X

Vg = XI—xes 28 T X1, %, V2q | definitions




Elimination of Subtransients

« This is known as the two-axis model and comes from assuming
that Tz, = T, = 0 is an acceptable manifold for time separation

UL Networkntertace
0=V, +I,Rs +X3lg — (1 + w)E,

/
dEq

Tao—; = —Eq — (Xa — Xg)la + Epq

Too 2 = —Ej + (Xg — X3,

dt | Mechanical
d ! ! / ' equations
2H%2 = Ty + ((=X4lq — E)la — (=X4lg + EDIg ) — Trw -9
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Two-Axis Model Example

« Same example as before, with same initialization
 Assume a fault at bus 3 at time t = 1.0, cleared by opening both lines into

bus 3 attime t = 1.1 seconds

11.59 Deg
1.0946 pu

PowerWorld case B4 TwoAXxis

Gen Bus 4 #1 Rotor Angle

74
72
70}
e8]
66
64}
62
60}
s8]
56
54]
52]
50
48]
a6}
44

Gen Bus 4 #1 Rotor Angle

14
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Y Y
2 3
Time

- Gen Bus 4 #1 Rotor Angle .




Two-Axis Model Example, Viewing the States

- PowerWorld allows the generator states to be stored, such as E/ below

Result Storage

Where to Save/Store Results
Store Results to RAM
[ 5ave Results to Hard Drive

Save Results Every n Timesteps:

L

[J Do Mot Combine RAM Results with Hard Drive Results

Save the Results stored to RAM in the PWE file Save the Min/Max Results stored to RAM in the PWE file

Store to RAM Options  Save to Hard Drive Options

Mote: Al fields that are specified in a plot series of defined plot will also be stored to RAM,
[] store Results for Open Devices Set All to MO for All Types Set Save Allby Type ...

Generator  Bus Load  Switched Shunt Branch Transformer DC Transmission Line VSC DC Line  Multi-Terminal DC Record  Multi-Terminal DC Converter Area  Zone  Interf
Set AllNO m %‘4 *_.53 ;0_3 ﬁ ?&n Records = Geo = Set~ Columns = [EH~ .E' "%’}E' ¥ B.in.l' S‘I]%'E: i)~ ﬁ Options =
Save All| Sawe |Save Save Save Save Save Save | Save V' |5ave EfdSave Ifd| Save Save Save Save | Save |save Save |=
Fram Rotor |Rotor Speed W MW W Mvar pu Vstab | VOEL | WUEL pu Status |Maching Exciter (¢
Selection: Angle |Angle Mech Accel state State =
Ma Shiff
1|MNC NO MO MHO NO NO NO NO NO NC NO MNC MO o NO NO HO !
Make Plot —
= ° NC YES MO YES NO YES NO YES NO MNC NO MNC NO MO NO BES s MO r
Gen Bus 4 #1 Machine State\Edp
£ 0.56
L
© 054
]
wn
© 0.52
R
S 0.5
% 0.48
H+*
< 0.46
(2}
>
Mo 044
c
[}
O 042
T T T T T T T T T T T T T T T T T T T T
0 1 2 3 4

Time

== Gen Bus 4 #1 Machine State\Edp .
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Further Time Scale Elimination?

« The previous model reduces the size of the model down to six equations,
with only four differential equations. This is sometimes called the fourth-
order model or the two-axis model.

-~ While not that common in industry, it does capture more details than the simpler models
we will discuss next

« Next we can reduce the model to a third-order model often called the flux-
decay model, by assuming the g-axis transient dynamics are slow (T, = 0)

« Then finally we can make further simplifications to connect to the classical
model we have previously introduced




Flux-Decay Model

« Assuming that T, = 0 is an acceptable manifold for time separation

0=V, +I4Rs — X,

dE!
Tao =t = —E4 — (Xa = Xi)la + Efa Rotor Winding
s
ac @ Ws Mechanical

do _ ) equations
2H=2 = Ty — Egly — Trw 9
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Flux-Decay Model Example

This shows the sensitivity to changing T, in the two-axis model
Two-axis model with T, = 0 is the same as the flux-decay model

Rotor Angle, Degrees

80

75

70

65

=)
o

9]
w

wu
o

N
9y

S
o

= Flux Decay

=—=Two-Axis TqOp=0.75
Two-Axis TqOp=0.1

= Two-Axis TqOp=0.05

=—=Two-Axis Tq0p=0.02
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Toward the Classical Model

 These last assumptions are the hardest to justify!

A Network Interface

0=V, +I,Rs +X;lg + Erq

dt ' Mechanical
d )
ZHd_(;) =Ty + Erqly — Trw equations

« If you apply the reference frame transformation you can get the equations
we originally presented for the classical model (with V.26, = V. + jV;)

S =w- W

W = %(ﬁ — % (V. sind — V; cos 6)) Here, we use E, instead of Ef; and make the
) ¢ common assumption for a classical model

=57 (-=V; + E, sin§) that X, = X4 = X

I; =Xic,i(Vr—Epcos5)




Saturation

Relationship between current and flux linkage
In magnetic materials is not linear

Often generators are designed to be operated
near saturation

There is also hysteresis, meaning residual
magnetism when current goes to zero (design
goal to reduce)

B field, tesla

0 20 40 60 80 100 120 140 160
H field, ampere-turns / inch

Image Source:
en.wikipedia.org/wiki/Saturation_(magnetic)

20
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Saturation Models

Tradeoff between accuracy and complexity
One simple approach is to replace

d I
Tao— dt = —E; — (Xg — Xq + Eq
With
dE’ !/ ! !/
TdO dt = —Eq — (Xd — Xd)ld — Se(Eq) + Efd
Where Se is a quadratic function
Se(Eq) = B(Eg — A)°
Usually specified at two points, such as Se(1.0) and Se(1.2)

21
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Saturation Example

« Given values SE10 = 0.1 and SE12 = 0.5, what are the values of A and B for
the quadratic saturation model?

e Solution
0.1 = B(1.0 —A)? and 0.5 =B(1.2 — A)*
« Solve these two equations simultaneously and get two possibilities
A =0.838,B=3.820 and A =1.0618,B = 26.2
« The first one is physically meaningful, as A should be less than 1
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Other Saturation Modeling Considerations

- Alternative models include scaled quadratic (same thing but divided by E,’)
and exponential Se(E;) = AeBEq

* In practice there are special cases, sometimes cause by user typos
- Whatto do if Se(1.2) < Se(1.0)?
- Whattodoif Se(1.0) =0 and Se(1.2) # 0
- Whatto doif Se(1.0) =Se(1.2) # 0




Introduction to GENSAL

GENSAL is the first industry standard model we
will study. It is a good introduction to subtransient
models and models that include saturation

It was designed going back to the “70s primarily
for salient pole machines, such as hydro

5th order, saturation affects the d-axis only

Very common in industry studies until about 2010-
2015, in which it began to be replaced by newer
models

STANDARDS
ASSOCIATION

IEEE Guide for Synchronous Generator
Modeling Practices and Parameter
Verification with Applications in Power
System Stability Analyses

IEEE Power and Energy Society

eeeeeeeeeeeeee
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GENSAL Definition

« Block diagram shows
rotor equations

%)

« Same machine interface Era —(0> T,
equations and mechanical
equations as the “model
without stator transients” Field Current | Laalya

To Exciter

we developed above.

 Forinitialization,
saturation only impacts
calculation of E¢,
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GENSAL Example

« Assume same system as before with same common generator parameters:
H=3.0, D=0, R, =0, X; =21, X, =2.0, X4y =0.3, X"=X"=0.2, X, = 0.13, Ty,
=7.0, T, =0.07, T",, =0.07, S(1.0) =0, and S(1.2) = 0.

« Same terminal conditions as before, resulting in § = 52.1°

« Then we again get V; = 0.7107,V, = 0.8326,1; = 0.9909, [, = 0.3553

* Now, use the network interface equations to get 4, {4

0=V;+1;Rs — X1, + (1+ w)yy
0=V, +I;Rs + Xjlg — (1 +wpy

* Y  =1.031,9; = —-0.6396

 Then use the steady-state differential equations to find On the d-axis you need
no__ I I to solve two linear
g = —0.6396, E; = 1.1298,9,; = 0.9614 equations for two

unknowns




GENSAL Example, Solution

E,’=1.1298 104118
’=0.9614 " Xq— X
W | v =1.031
+ ! @ Eq X&_X(Ii, + v 7
Erq —>@—* T).s X =%, Va
- 0.5882

\_4 (X, —Xx,)? X5 —iX;

Iq

¥ +
Field Current Laalfa + =
To Exciter —e z a— “d
+ +
1.8 0.17 1" 1,=0.9909

Iq

3.460 _
X, — X, le
B 1
I’
@ 15 \ "

Eq=1.1298+1.8%0.991=2.912

1,~0.3553
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GENSAL Example 2

 Now repeat the initialization with the saturation values specified before,
SE10 =0.1 and SE12 = 0.5

 Recall, we found A = 0.838 and B = 3.82
 Now, use the block diagram and recognize that the derivative term before
E; is zero
Erq = Eg (1+ Se(Ef)) + (Xq — X1
= 1.1298(1 + B(1.1298 — 4)?) + (2.1 — 0.3)(0.9909)
= 1.1298(1 + 3.82(1.1298 — 0.838)%) + 1.784 = 3.28
* E¢q is the only initialized variable that is different because of saturation

28
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GENSAL Saturation Values from Large Case

Essentially all
GENSAL generators
have saturation
values

Per Unit Saturation (S1 and $12)

R iiM
Example GENSAL S1 and S12 Values ’

1.6 [
1.5

1.4
1.3
1.2
1.1

0.9
0.8
0.7
0.6
05
0.4
0.3
0.2
0.1

-
0 200 400 600 800 1.000
Count of Generators

- 351 = 312




Machine Models

Common synchronous machine models

Classical — second order primarily for teaching purposes

Flux-decay — simplified third order model

Two-axis — simplified fourth order model

GENSAL - originally for salient pole generators, now becoming obsolete

GENROU - for round-rotor models

GENTPF — first replacement for GENSAL

GENTPJ — second replacement for GENSAL

GENQEC - third and current replacement for GENSAL, can also replace GENROU

30
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