ECEN 667 Power System Stability

Lecture 5: Synchronous Machine Modeling, Part 1

Prof. Adam Birchfield

Dept. of Electrical and Computer Engineering

Texas A&M University

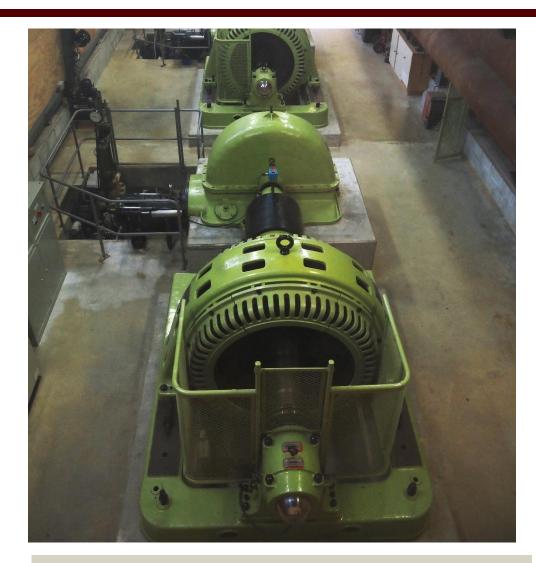
abirchfield@tamu.edu

Announcements

- Homework Assignment #1 is due Thursday, Sept. 11th at 8 AM. Email me your solution as a single PDF.
- Homework Assignment #2 is due Thursday, Sept. 25th at 8 AM.
- Read book chapters 3, 4, and 5
- Review the slides and PowerWorld examples

Synchronous Machines

- Steam, gas, and hydro turbines use synchronous machines to convert mechanical power to electric
- Hence, they have historically dominated power system dynamics
- The classical model, introduced before, is over-simplified and not used by industry very much
- We will now go through more detailed synchronous machine modeling for stability studies

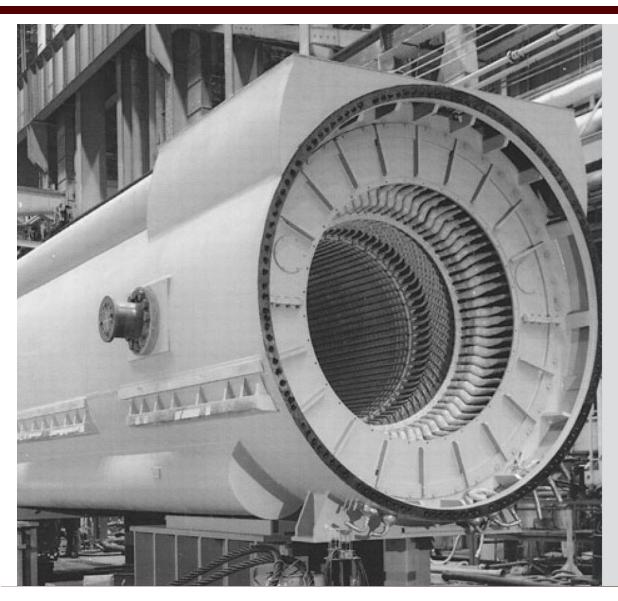


Marshelec, <u>CC BY 4.0</u>, via Wikimedia Commons

Synchronous Machine Terms

- Two main components of a machine
 - Stator the outer stationary part, containing armature windings arranged in 2 or more "poles". Machines with more poles spin slower.
 - Rotor the inner, moving part, which contains a dc field winding powered by an exciter
- Two main types of rotors
 - Round Rotor
 - Air-gap is constant, used with higher speed machines
 - Salient Rotor (often called Salient Pole)
 - Air-gap varies circumferentially
 - Used with many pole, slower machines such as hydro
 - Narrowest part of gap in the d-axis and the widest along the q-axis

Synchronous Machine Stator

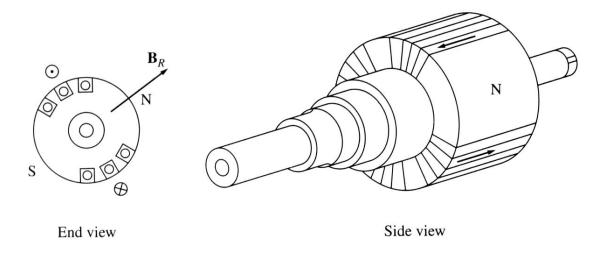


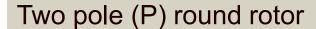
Generator stator showing completed windings for a 757-MVA, 3600-RPM, 60-Hz synchronous generator (Courtesy of General Electric.)

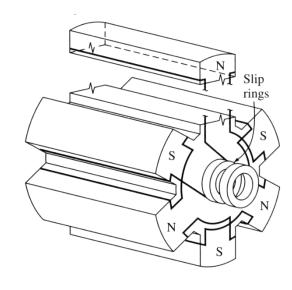
> Image Source: Glover/Overbye/Sarma Book, Sixth Edition, Beginning of Chapter 8 Photo

Synchronous Machine Rotors

Rotors are essentially electromagnets







Six pole salient rotor

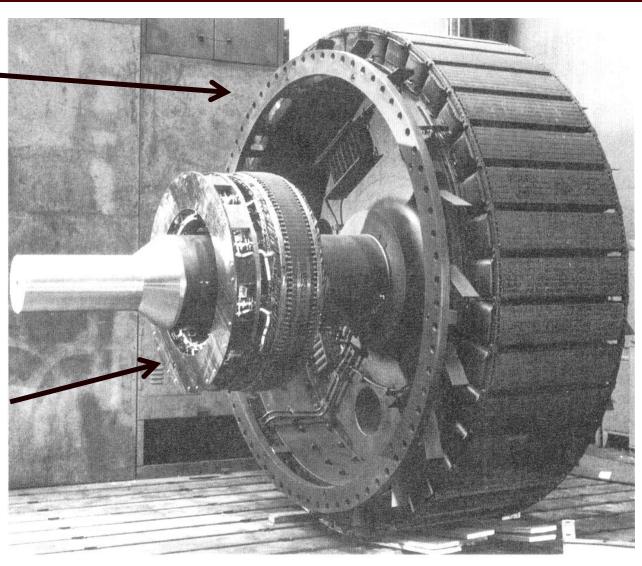
Images Source: Dr. Gleb Tcheslavski, ee.lamar.edu/gleb/teaching.htm

Synchronous Machine Rotor

High pole salient rotor

Shaft

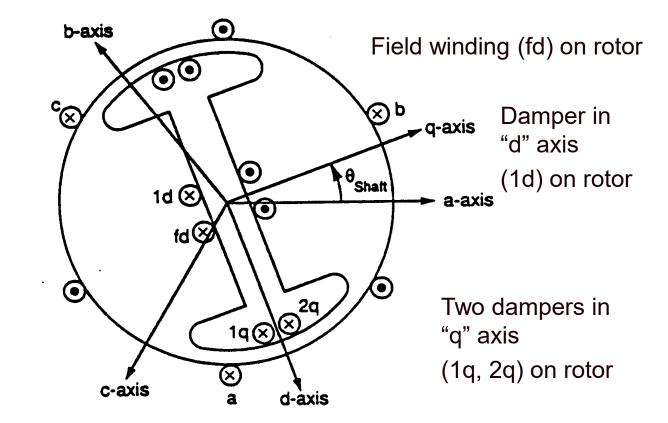
Part of exciter, which is used to control the field current



The Main Diagram

- Note that conventions vary in other textbooks – this can lead to confusion!
- On the stator (2 pole equivalent), we have three stationary phase windings (a, b, and c)
- On the rotor, we have two rotating "axes", direct (d) and quadrature (q), with one physical field winding (fd) and three damper windings that are possibly fictitious (1d, 1q, 2q)
- θ_{shaft} is the machine's angle

3∮ bal. windings (a,b,c) – stator



Park's Transformation

- The purpose of Park's transformation is to convert stator values (voltage, current, flux) into the rotating DQ reference frame of the rotor
- The matrix depends on θ_{shaft} and is specific to our diagram conventions

$$T(\theta_{shaft}) = \frac{2}{3} \begin{bmatrix} \sin\left(\frac{P}{2}\theta_{shaft}\right) & \sin\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & \sin\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) \\ \cos\left(\frac{P}{2}\theta_{shaft}\right) & \cos\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & \cos\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

 Now, for example, we convert stator voltages on the a, b, and c windings to d, q, and 0 axes as follows

$$\begin{bmatrix} V_d \\ V_q \\ V_0 \end{bmatrix} = T(\theta_{shaft}) \begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix}$$

• Similarly for current and flux linkage. The 0-axis represents the θ -independent component

Park's Transformation Inverse

 The inverse is used to convert from DQ0 axis coordinates back to the stationary ABC reference frame

$$T^{-1} = \begin{bmatrix} \sin\left(\frac{P}{2}\theta_{shaft}\right) & \cos\left(\frac{P}{2}\theta_{shaft}\right) & 1 \\ \sin\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & \cos\left(\frac{P}{2}\theta_{shaft} - \frac{2\pi}{3}\right) & 1 \\ \sin\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) & \cos\left(\frac{P}{2}\theta_{shaft} + \frac{2\pi}{3}\right) & 1 \end{bmatrix}$$

For example, using current or flux linkage

$$\begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} = T^{-1} \begin{bmatrix} i_d \\ i_q \\ i_0 \end{bmatrix} \qquad \begin{bmatrix} \lambda_a \\ \lambda_b \\ \lambda_c \end{bmatrix} = T^{-1} \begin{bmatrix} \lambda_d \\ \lambda_q \\ \lambda_0 \end{bmatrix}$$

 A key idea in synchronous machine modeling is we do as much as possible in DQ0 coordinates

Winding Circuit Equations

- The voltage drop across each winding depends on both
 - The resistance in the copper conductors (Ohm's law) and
 - Induced electromotive force from the flux linkage (Faraday's law)
- So, we have the following equations for our 7 windings

$$v_{a} = i_{a}r_{s} + \frac{d\lambda_{a}}{dt} \qquad v_{b} = i_{b}r_{s} + \frac{d\lambda_{b}}{dt} \qquad v_{c} = i_{c}r_{s} + \frac{d\lambda_{c}}{dt}$$

$$v_{fd} = i_{fd}r_{rf} + \frac{d\lambda_{fd}}{dt} \qquad v_{1d} = i_{1d}r_{s} + \frac{d\lambda_{1d}}{dt}$$

$$v_{1q} = i_{1q}r_{1q} + \frac{d\lambda_{1q}}{dt} \qquad v_{2q} = i_{2q}r_{s} + \frac{d\lambda_{2q}}{dt}$$

Generally, we assume that the damper windings are short-circuited, so that

$$v_{1d} = v_{1q} = v_{2q} = 0$$

Transforming the Stator Equations

• We have to be careful with the $\frac{d\lambda}{dt}$ terms because the transformation is a function of time

$$\begin{aligned} v_{abc} &= r_{s} i_{abc} + \frac{d}{dt} \lambda_{abc} \\ T^{-1} v_{dq0} &= r_{s} T^{-1} i_{dq0} + \frac{d}{dt} \left(T^{-1} \lambda_{dq0} \right) \\ v_{dq0} &= r_{s} i_{dq0} + T \frac{d}{dt} \left(T^{-1} \lambda_{dq0} \right) = r_{s} i_{dq0} + T \left(T^{-1} \frac{d}{dt} \lambda_{dq0} + \left(\frac{d}{dt} T^{-1} \right) \lambda_{dq0} \right) \\ v_{dq0} &= r_{s} i_{dq0} + \frac{d}{dt} \lambda_{dq0} + T \left(\frac{d}{dt} T^{-1} \right) \lambda_{dq0} \end{aligned}$$

You should verify the following for yourself

$$T\left(\frac{d}{dt}T^{-1}\right) = \begin{bmatrix} 0 & -\omega_{shaft} & 0\\ \omega_{shaft} & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

 ω_{shaft} is the angular speed of the rotor, defined by

$$\frac{d\theta_{shaft}}{dt} = \frac{2}{P}\omega_{shaft}$$

And we get the following transformed DQ0 stator equations

$$v_d = i_d r_s + \frac{d\lambda_d}{dt} - \omega_{shaft} \lambda_q \qquad v_q = i_q r_s + \frac{d\lambda_q}{dt} + \omega_{shaft} \lambda_d \qquad v_0 = i_0 r_s + \frac{d\lambda_0}{dt}$$

Power Analysis

Total electric power P_t at the stator terminals is

$$P_t = v_a i_a + v_b i_b + v_c i_c = \left(T^{-1} v_{dq0}\right) \cdot \left(T^{-1} i_{dq0}\right) = \frac{3}{2} v_d i_d + \frac{3}{2} v_q i_q + 3 v_0 i_0$$

Now plug in our circuit equations for the voltages from before

$$P_{t} = \frac{3}{2} \left(i_{d} \frac{d\lambda_{d}}{dt} + i_{q} \frac{d\lambda_{q}}{dt} + 2i_{0} \frac{d\lambda_{0}}{dt} \right) + \frac{3}{2} \left(\lambda_{d} i_{q} - \lambda_{q} i_{d} \right) \left(\frac{P}{2} \right) \omega_{shaft} + \frac{3}{2} \left(i_{d}^{2} + i_{q}^{2} + 2i_{0}^{2} \right) r_{s}$$

Power temporarily stored in the armature magnetic fields (averages out to zero)

Power lost in armature resistances

Power transferred across the "air gap" between the rotor and the stator

The Machine's Equation of Motion

 The middle term must correspond to the electrical torque (an alternative argument is given in our Sauer/Pai book, this one was from Kundur)

$$T_e = -\frac{3}{2} \left(\lambda_d i_q - \lambda_q i_d \right) \left(\frac{P}{2} \right)$$

Newton's Second Law gives the machine's equations of motion

$$J\frac{2}{P}\frac{d\omega_{shaft}}{dt} = T_m - T_e - T_{fw}$$

- T_m is the mechanical torque
- T_e is the electrical torque
- T_{fw} is the torque lost due to friction and windage
- *J* is the mechanical moment of inertia of the rotor.
- This equation is also known as the swing equation.

Magnetic Coupling Between Windings

- Until this point, the winding equations have been mostly separate
- What couples them is the fact that currents cause flux linkages not just for their own windings, but for others as well
- A very nice thing about the DQ0 coordinates is that they are orthogonal, so currents only link along the same axis
- We will start with linear relationships, but saturation causes nonlinearities which we will consider shortly

$$\begin{bmatrix} \lambda_d \\ \lambda_{fd} \\ \lambda_{1d} \end{bmatrix} = \begin{bmatrix} L_{\ell s} + L_{md} & L_{sfd} & L_{s1d} \\ \frac{3}{2}L_{sfd} & L_{fdfd} & L_{fd1d} \\ \frac{3}{2}L_{s1d} & L_{fd1d} & L_{1d1d} \end{bmatrix} \begin{bmatrix} i_d \\ i_{fd} \\ i_{1d} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \lambda_q \\ \lambda_{1q} \\ \lambda_{2q} \end{bmatrix} = \begin{bmatrix} L_{\ell s} + L_{mq} & L_{s1q} & L_{s2q} \\ \frac{3}{2}L_{s1q} & L_{1q1q} & L_{1q2q} \\ \frac{3}{2}L_{s2q} & L_{1q2q} & L_{2q2q} \end{bmatrix} \begin{bmatrix} i_q \\ i_{1q} \\ i_{2q} \end{bmatrix} \quad \text{and} \quad \lambda_0 = L_{\ell s} i_0$$

- All the L's represent constant physical inductances among windings
- $L_{\ell s}$ is the "leakage inductance" of stator windings onto themselves

Summary So Far

We have 7 winding circuit equations (transformed)

$$\begin{aligned} v_d &= i_d r_s + \frac{d\lambda_d}{dt} - \omega_{shaft} \lambda_q & v_q &= i_q r_s + \frac{d\lambda_q}{dt} + \omega_{shaft} \lambda_d & v_0 &= i_0 r_s + \frac{d\lambda_0}{dt} \\ v_{fd} &= i_{fd} r_{rf} + \frac{d\lambda_{fd}}{dt} & v_{1d} &= i_{1d} r_s + \frac{d\lambda_{1d}}{dt} \\ v_{1q} &= i_{1q} r_{1q} + \frac{d\lambda_{1q}}{dt} & v_{2q} &= i_{2q} r_s + \frac{d\lambda_{2q}}{dt} \end{aligned}$$

Two mechanical equations

$$\frac{d\theta_{shaft}}{dt} = \frac{2}{P}\omega_{shaft} \qquad J\frac{2}{P}\frac{d\omega_{shaft}}{dt} = T_m - \left(-\frac{3}{2}\left(\lambda_d i_q - \lambda_q i_d\right)\left(\frac{P}{2}\right)\right) - T_{fw}$$

And 7 magnetic coupling equations

$$\begin{bmatrix} \lambda_d \\ \lambda_{fd} \\ \lambda_{1d} \end{bmatrix} = \begin{bmatrix} L_{\ell s} + L_{md} & L_{sfd} & L_{s1d} \\ \frac{3}{2}L_{sfd} & L_{fdfd} & L_{fd1d} \\ \frac{3}{2}L_{s1d} & L_{fd1d} & L_{1d1d} \end{bmatrix} \begin{bmatrix} i_d \\ i_{fd} \\ i_{1d} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \lambda_q \\ \lambda_{1q} \\ \lambda_{2q} \end{bmatrix} = \begin{bmatrix} L_{\ell s} + L_{mq} & L_{s1q} & L_{s2q} \\ \frac{3}{2}L_{s1q} & L_{1q1q} & L_{1q2q} \\ \frac{3}{2}L_{s2q} & L_{1q2q} & L_{2q2q} \end{bmatrix} \begin{bmatrix} i_q \\ i_{1q} \\ i_{2q} \end{bmatrix} \quad \text{and} \quad \lambda_0 = L_{\ell s} i_0$$

Next Steps

- The prior slide model is the full detail (without saturation) model based on analysis of the physics, in physical units, which is closer to modeling for timedomain (EMT) programs
- We are going to make some major modifications through mathematical manipulation, to produce a model more aligned with industry stability studies
 - 1. We are going to normalize all variables with the use of the per-unit system
 - 2. We are going to make several equivalent substitutions. Instead of θ_{shaft} and ω_{shaft} we will have δ and ω ; instead of λ_{fd} , λ_{1q} , v_{fd} we will have E_q' , E_d' , and E_{fd} ; instead of resistances (except r_s) we will have time constants; instead of the physical reactances X we will have measured reactances X', X'', etc.
 - 3. We will eliminate damper winding voltages and assume some additional symmetry between the winding reactances.

Per-Unit Bases for Synchronous Machines

- Fundamental "arbitrary" choices for per-unit are frequency base $\omega_B = \omega_S$ (rated synchronous electrical speed), S_B (three-phase rated MVA base of the machine), and V_B (rated RMS line-to-neutral stator voltage).
- From these we calculate additional bases. $I_B = -\frac{S_B}{3V_B}$ and $\Lambda_B = \frac{V_B}{\omega_B}$
- Note the negative sign on I_B , which converts the current orientation to "generator notation", that is, out of the machine.
- On the rotor, we have additional current bases scaled by inductances. So,

$$I_{BFD} = -\frac{L_{md}}{L_{sfd}}I_{B}$$
 $I_{B1D} = -\frac{L_{md}}{L_{s1d}}I_{B}$ $I_{B1Q} = -\frac{L_{mq}}{L_{s1q}}I_{B}$ $I_{B2Q} = -\frac{L_{mq}}{L_{s2q}}I_{B}$

- And there are corresponding voltage and flux bases, and impedance bases $V_{BX} = \frac{S_B}{I_{BX}}$, $\Lambda_{BX} = \frac{V_{BX}}{\omega_B}$, and $Z_{BX} = \frac{V_{BX}^2}{S_B}$, where X is fd, 1d, 1q, and 2q.
- Finally, there is a mechanical torque base of $T_B = \frac{S_B}{\omega_B \frac{2}{R}}$

Scaled Variables

- Upper-case for normalized variables of voltage, current, and resistance $V_d, V_q, V_0, V_{fd}, V_{1d}, V_{1q}, V_{2q}, I_d, I_q, I_0, I_{fd}, I_{1d}, I_{1q}, I_{2q}, R_s, R_{fd}, R_{1d}, R_{1q}, R_{2q}$
- Normalized fluxes use psi, ψ_d , ψ_q , ψ_0 , ψ_{fd} , ψ_{1d} , ψ_{1q} , ψ_{2q}
- And for inductances, we divide by the impedance base, multiplying by ω_s , resulting in reactance quantities (this does not require assuming frequency will be ω_s , just using it to define the base).

$$X_{\ell s}, X_{md}, X_{mq}, X_{fd}, X_{1d}, X_{1q}, X_{2q}$$

The following scale factors are used in the linear impedance model.

$$c_d = \frac{L_{fd1d}L_{md}}{L_{sfd}L_{s1d}}$$
 $c_q = \frac{L_{1q2q}L_{mq}}{L_{s1q}L_{s2q}}$ (we commonly assume $c_d = c_q = 1$)

- For torques, we capitalize the subscripts when normalizing: T_M , T_E , T_{FW}
- For inertia constant J, we replace it with $H = \frac{1}{2}J \frac{\left(\omega_B \frac{2}{P}\right)^2}{S_B}$

New Relative Variables

We define a relative, normalized machine angle

$$\delta = \frac{1}{\omega_s} \frac{P}{2} \theta_{shaft} - t$$

And a relative, normalized machine speed

$$\omega = \frac{\omega_{shaft} - \omega_s}{\omega_s}$$

We also replace three variables with "E" variables as follows

$$E'_{q} = \frac{X_{md}}{X_{fd}} \psi_{fd}$$

$$E'_{d} = -\frac{X_{mq}}{X_{q1}} \psi_{1q}$$

$$E_{fd} = \frac{X_{md}}{R_{fd}} V_{fd}$$

Using Test-Based Parameters

- Instead of physical-based parameters (R and X before) we convert to the following variables which are more easily determined from machine tests
- Time constants for the four rotor windings

$$T'_{do} = \frac{X_{fd}}{\omega_s R_{fd}} \qquad T''_{do} = \frac{1}{\omega_s R_{1d}} \left(X_{\ell 1d} + \frac{1}{\frac{1}{X_{md}} + \frac{1}{X_{\ell fd}}} \right)$$
$$T'_{qo} = \frac{X_{1q}}{\omega_s R_{1q}} \qquad T''_{qo} = \frac{1}{\omega_s R_{2q}} \left(X_{\ell 2q} + \frac{1}{\frac{1}{X_{mq}} + \frac{1}{X_{\ell 1q}}} \right)$$

And 6 new reactance parameters

$$X_{d} = X_{md} + X_{\ell s} \qquad X_{d}' = X_{d} - \frac{X_{md}^{2}}{X_{fd}} \qquad X_{d}'' = X_{\ell s} + \frac{1}{\frac{1}{X_{md}} + \frac{1}{X_{\ell fd}} + \frac{1}{X_{\ell 1d}}}$$

$$X_{q} = X_{mq} + X_{\ell s} \qquad X_{q}' = X_{q} - \frac{X_{mq}^{2}}{X_{1q}} \qquad X_{q}'' = X_{\ell s} + \frac{1}{\frac{1}{X_{mq}} + \frac{1}{X_{\ell 1q}} + \frac{1}{X_{\ell 2q}}}$$

Full Per-Unit Model (after the Dust Clears)

$$\begin{split} &\frac{1}{\omega_{S}}\frac{d\psi_{d}}{dt} = V_{d} + I_{d}R_{S} + (\omega + 1)\psi_{q} \\ &\frac{1}{\omega_{S}}\frac{d\psi_{q}}{dt} = V_{q} + I_{q}R_{S} - (\omega + 1)\psi_{d} \\ &\frac{1}{\omega_{S}}\frac{d\psi_{0}}{dt} = V_{0} + I_{0}R_{S} \\ &T'_{do}\frac{dE'_{q}}{dt} = -E'_{q} - (X_{d} - X'_{d}) \left[I_{d} - \frac{(X'_{d} - X''_{d})}{(X'_{d} - X_{\ell S})^{2}} (\psi_{1d} + (X'_{d} - X_{\ell S})I_{d} - E'_{q}) \right] + E_{fd} \\ &T''_{do}\frac{d\psi_{1d}}{dt} = -\psi_{1d} + E'_{q} - (X'_{d} - X_{\ell S})I_{d} \\ &T'_{qo}\frac{dE'_{d}}{dt} = -E'_{d} + \left(X_{q} - X'_{q} \right) \left[I_{q} - \frac{X'_{q} - X''_{q}}{(X'_{q} - X_{\ell S})^{2}} (\psi_{2q} + (X'_{q} - X_{\ell S})I_{q} + E'_{d}) \right] \\ &T''_{qo}\frac{d\psi_{2q}}{dt} = -\psi_{2q} - E'_{d} - (X'_{q} - X_{\ell S})I_{q} \\ &\frac{d\delta}{dt} = \omega \\ &2H\frac{d\omega}{dt} = T_{M} + (\psi_{q}I_{d} - \psi_{d}I_{q}) - T_{FW} \end{split}$$

$$\psi_{d} = -X_{d}^{"}I_{d} + \frac{X_{d}^{"}-X_{\ell s}}{X_{d}^{'}-X_{\ell s}}E_{q}^{'} + \frac{X_{d}^{'}-X_{d}^{"}}{X_{d}^{'}-X_{\ell s}}\psi_{1d}$$

$$\psi_{q} = -X_{q}^{"}I_{q} - \frac{X_{q}^{"}-X_{\ell s}}{X_{q}^{'}-X_{\ell s}}E_{d}^{'} + \frac{X_{q}^{'}-X_{q}^{"}}{X_{q}^{'}-X_{\ell s}}\psi_{2q}$$

$$\psi_{0} = -X_{\ell s}I_{0}$$

Full Per-Unit Model, Labeled

$$\frac{1}{\omega_{s}} \frac{d\psi_{d}}{dt} = V_{d} + I_{d}R_{s} + (\omega + 1)\psi_{q}$$

$$\frac{1}{\omega_{s}} \frac{d\psi_{q}}{dt} = V_{q} + I_{q}R_{s} - (\omega + 1)\psi_{d}$$
Stator
Windings
$$\frac{1}{\omega_{s}} \frac{d\psi_{0}}{dt} = V_{0} + I_{0}R_{s}$$

$$T'_{do} \frac{dE'_q}{dt} = -E'_q - (X_d - X'_d) \left[I_d - \frac{(X'_d - X''_d)}{(X'_d - X_{\ell s})^2} (\psi_{1d} + (X'_d - X_{\ell s}) I_d - E'_q) \right] + E_{fd}$$

$$T''_{do} \frac{d\psi_{1d}}{dt} = -\psi_{1d} + E'_q - (X'_d - X_{\ell s}) I_d \qquad \text{Rotor Windings}$$

$$T'_{qo}\frac{dE'_d}{dt} = -E'_d + \left(X_q - X'_q\right) \left[I_q - \frac{X'_q - X'_q'}{\left(X'_q - X_{\ell s}\right)^2} \left(\psi_{2q} + \left(X'_q - X_{\ell s}\right)I_q + E'_d\right)\right]$$

$$T_{qo}^{\prime\prime} \frac{d\psi_{2q}}{dt} = -\psi_{2q} - E_d^{\prime} - (X_q^{\prime} - X_{\ell s})I_q$$

$$\frac{d\delta}{dt} = \omega$$

$$2H\frac{d\omega}{dt} = T_M + (\psi_q I_d - \psi_d I_q) - T_{FW}$$

Mechanical equations

Stator flux definitions

$$\psi_{d} = -X_{d}^{"}I_{d} + \frac{X_{d}^{"}-X_{\ell s}}{X_{d}^{'}-X_{\ell s}}E_{q}^{'} + \frac{X_{d}^{'}-X_{d}^{"}}{X_{d}^{'}-X_{\ell s}}\psi_{1d}$$

$$\psi_{q} = -X_{q}^{"}I_{q} - \frac{X_{q}^{"}-X_{\ell s}}{X_{q}^{'}-X_{\ell s}}E_{d}^{'} + \frac{X_{q}^{'}-X_{q}^{"}}{X_{q}^{'}-X_{\ell s}}\psi_{2q}$$

$$\psi_{0} = -X_{\ell s}I_{0}$$