Name:	UIN:	Section:	Score:	
(This quiz is just for practice.)				

For the following three-phase system:

Generator	Transformer 1-2	Transmission	Transformer 3-4	Load
75 MVA	80 MVA	line	55 MVA	Wye-connected
20 kV	20:161 kV	$Z = 14 + j26 \Omega$	161:34.5 kV	with each phase
X = 10%	Z = 15%		Z = 12%	$Z = 20 + j10 \Omega$
R = 0	X/R ratio = 10		X/R ratio = 8	

1. Fill out the below table of system per-unit base values, starting with the two bases given.

	Bus 1	Bus 2	Bus 3	Bus 4
$S_{3\phi \ base}$	100 MVA	100 MVA	100 MVA	100 MVA
$S_{1\phi \ base}$	33 MVA	33 MVA	33 MVA	33 MVA
$V_{LL\;base}$	20 kV	161 kV	161 kV	34.5 kV
$V_{LN\;base}$	11.55 kV	92.95 kV	92.95 kV	19.92 kV
Z_{base}	4 Ω	259.21 Ω	259.21 Ω	11.9 Ω
I_{base}	2887 A	359 A	359 A	1673 A

2. Calculate the impedance of each device in per-unit on the device's own base (if applicable), in actual units, and in per-unit on the system bases above.

	Generator	XF 1-2	T-Line	XF 3-4	Load
$Z_{pu,dev}$	j0.1	0.015 + j0.15	N/A	0.015 + j0.12	N/A
Z_{actual}	j0.5333 Ω	$0.075 + j0.75 \Omega$	14+j26 Ω	7.07+j56.08 Ω	20 +j10 Ω
$Z_{pu,sys}$	j0.1333	0.0188+j0.188	0.054+j0.1	0.027+j0.216	1.68+j0.84

3. Draw the equivalent per-unit circuit for this system, with all system per-unit values shown.

4. With the generator operated at rated voltage, calculate per-unit current on the system base, and actual current in Amps (a) in the transmission line and (b) supplied by the generator.

$$\begin{split} V_{pu} &= \frac{^{20 \angle 0^{\circ} \, kV}}{^{20 \, kV}} = 1 \angle 0^{\circ} \\ Z_{total,pu,sys} &= 1.78 + j1.377 \\ I_{pu} &= \frac{V_{pu}}{Z_{total,pu,sys}} = \frac{1}{^{1.78 + j1.377}} = 0.444 \angle -37.7^{\circ} \\ I_{tline} &= I_{pu} \cdot I_{base,2} = (0.444 \angle -37.7^{\circ}) \cdot 259.21 \, A = 115.2 \angle -37.7^{\circ} \, A \\ I_{gen} &= I_{pu} \cdot I_{base,1} = (0.444 \angle -37.7^{\circ}) \cdot 2887 \, A = 1283 \angle -37.7^{\circ} \, A \end{split}$$

For extra practice:

- 5. What if the generator's rated voltage is 18 kV?
 - a. What would be the generator impedance base?
 - b. What would the generator's actual impedance in Ohms?
 - c. What would be the generator's impedance in per-unit on the system base?
 - d. If the generator were operated at 18 kV, what would be the per-unit generator voltage on the system base?
 - e. What would the new current values in 4 be?
- 6. Calculate the real and reactive power for each element, in per-unit and in actual units
 - a. How much P and Q are the generator producing?
 - b. How much P and Q are lost in the generator's impedance?
 - c. How much P and Q are lost in the transformer 1-2's impedance?
 - d. How much P and Q are lost in the transmission line?
 - e. How much P and Q are lost in transformer 3-4?
 - f. How much P and Q are absorbed by the load?
- 7. If you added a capacitor to bus 4 to produce 20 Mvar,
 - a. What would its Q be in per-unit?
 - b. What would its impedance Z be in per-unit?
 - c. How do the current values in 4 change?