HW 5 Solutions

6.9
$$x_2 - 3x_1 + 1.9 = 0$$

$$x_2 + x_1^2 - 3.0 = 0$$

Rearrange to solve for x_1 and x_2 :

$$x_1 = \frac{1}{3}x_2 + 0.6333$$

$$x_2 = 3.0 - x_1^2$$

Starting with an initial guess of $x_1(0) = 1$ and $x_2(0) = 1$

$$x_1(1) = \frac{1}{3}x_2(0) + 0.6333 = 0.9667$$

 $x_2(1) = 3 - [x_1(0)]^2 = 2$

We repeat this procedure using the general equations

$$x_1(n+1) = \frac{1}{3}x_2(n) + 0.6333$$

$$x_2(n+1) = 3 - [x_1(n)]^2$$

n	0	1	2	3	 47	48	49	50
<i>x</i> ₁	1	0.9667	1.3	1.3219	 1.1746	1.1735	1.1734	1.1743
<i>x</i> ₂	1	2.0	2.0656	1.31	 1.6205	1.6202	1.6229	1.6231

After 50 iterations, x_1 and x_2 have a precision of 3 significant digits.

$$x_1 = 1.17$$

 $x_2 = 1.62$

6.12 Rewriting the given equations,

$$x_1 = \frac{x_2}{3} + 0.633;$$
 $x_2 = 1.8 - x_1^2$

With an initial guess of $x_1(0) = 1$ and $x_2(0) = 1$,

update x_1 with the first equation above, and x_2 with the second equation.

Thus
$$x_1 = \frac{x_2(0)}{3} + 0.633 = \frac{1}{3} + 0.633 = 0.9663$$

and
$$x_2 = 1.8 - x_1(0)^2 = 1.8 - 1 = 0.8$$

In succeeding iterations, compute more generally as

$$x_1(n+1) = \frac{x_2(n)}{3} + 0.633$$

and

$$x_2(n+1) = 1.8 - x_1^2(n)$$

After several iterations, $x_1 = 0.938$ and $x_2 = 0.917$.

After a few more iterations, $x_1 = 0.93926$ and $x_2 = 0.9178$.

However, note that an "uneducated guess" of initial values, such as $x_1(0) = x_2(0) = 100$, would have caused the solution to diverge.

6.18
$$x^3 + 8x^2 + 2x - 40 = 0$$

 $x(0) = 1$

$$J(i) = \frac{df}{dx}\Big|_{x=x(i)} = [3x^2 + 16x + 2]_{x=x(i)}$$

In the general form:

$$x(i+1) = x(i) + \frac{1}{3x(i)^2 + 16x(i) + 2} \times (-x(i)^3 - 8x(i)^2 - 2x(i) + 40)$$

Using x(0) = 1, we arrive at

i	0	1	2	3	4
X	1	2.381	1.9675	1.9116	1.9106
ε	1.381	0.1737	0.0284	5.19E-4	

After 4 iterations, $\varepsilon < 0.001$.

$$x = 1.9106$$

6.25
$$10x_1 \sin x_2 + 2 = 0$$

$$10x_1^2 - 10x_1\cos x_2 + 1 = 0$$

$$J(i) = \frac{df}{dx}\Big|_{x=x(i)} = \begin{bmatrix} 10\sin x_2 & 10x_1\sin x_2 \\ 20x_1 - 10\cos x_2 & 10x_1\sin x_2 \end{bmatrix}_{x=x(i)}$$

In the general form

$$x(i+1) = x(i) - J^{-1}(i)f(x)$$

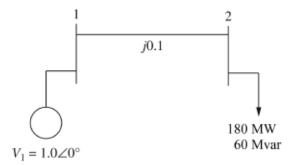
Solving using MATLAB with $x_1(0) = 1$, $x_2(0) = 0$, $\varepsilon = 1E - 4$:

i	0	1	2	3	4
<i>x</i> ₁	1	0.90	0.8587	0.8554	0.8554
<i>X</i> ₂	0	-0.20	-0.2333	- 0.2360	- 0.2360
ε	œ	0.1667	0.01131	7.0E-5	

After 4 iterations, Newton-Raphson converges to

$$x_1 = 0.8554 \text{ rad}$$

$$x_2 = -0.2360 \text{ rad}$$



First, convert all values to per-unit.

$$P_{\text{pu}} = \frac{P}{S_{\text{base}}} = \frac{-180 \text{ MW}}{100 \text{ MVA}} = -1.8 \text{ p.u.}$$

$$Q_{\text{pu}} = \frac{Q}{S_{\text{base}}} = \frac{-60 \text{ MW}}{100 \text{ MVA}} = -0.6 \text{ p.u.}$$

$$\Delta y_{\text{max,pu}} = \frac{\Delta y_{\text{max}}}{S_{\text{base}}} = \frac{0.1 \text{ MVA}}{100 \text{ MVA}} = 1\text{E-4 p.u.}$$

Since there are 2 buses, we need to solve 2(n-1)=2 equations.

Therefore, J has dimension 2×2 .

Using Table 6.5

$$J1_{22} = -V_2V_{21}V_1\sin(\delta_2 - \delta_1 - \theta_{21})$$

$$J2_{22} = V_2Y_{22}\cos(\theta_{22}) + Y_{21}V_1\cos(\delta_2 - \delta_1 - \theta_{21}) + Y_{22}V_2\cos(-\theta_{22})$$

$$J3_{22} = V_2 Y_{21} V_1 \cos(\delta_2 - \delta_1 - \theta_{21})$$

$$J4_{22} = -V_2Y_{22}\sin\theta_{22} + Y_{21}V_1\sin\left(\delta_2 - \delta_1 - \theta_{21}\right) + Y_{22} + V_2\sin\left(-\theta_{22}\right)$$

Also.

$$Y_{\text{bus}} = \begin{bmatrix} -j10 & j10 \\ j10 & -j10 \end{bmatrix} = \begin{bmatrix} 10 \angle -90 & 10 \angle 90 \\ 10 \angle 90 & 10 \angle -90 \end{bmatrix}$$

Finally, using Eqs. (6.6.2) and (6.6.3),

$$P_2(\delta_2, V_2) = V_2 \left[Y_{21} V_1 \cos(\delta_2 - \delta_1 - \theta_{21}) + Y_{22} V_2 \cos(-\theta_{22}) \right]$$

$$Q_{2}\left(\delta_{2}, V_{2}\right) = V_{2} \left[Y_{21}V_{1} \sin\left(\delta_{2} - \delta_{1} - \theta_{21}\right) + Y_{22}V_{2} \sin\left(-\theta_{22}\right)\right]$$

Solving using MATLAB with $V_2(0) = 1.0 \angle 0$,

i	0	1	2	3
V_2	1.0 ∠ 0	0.94∠-10.313°	0.9158∠-11.308°	0.9149∠-11.347°

After 3 iterations

$$V_2 = 0.9149 \angle -11.347^{\circ}$$