4.10

From Eq. (4.5.10)

$$
\begin{array}{ll}
L_{1}=2 \times 10^{-7} L n\left(\frac{D}{r^{\prime}}\right) \frac{\mathrm{H}}{\mathrm{~m}} & D=4 \mathrm{ft} \\
L_{1}=2 \times 10^{-7} L n\left(\frac{4}{1.6225 \times 10^{-2}}\right) & r^{\prime}=e^{\frac{-1}{4}}\left(\frac{5}{2}\right)\left(\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right) \\
L_{1}=\underline{\underline{1.101 \times 10^{-6}} \frac{\mathrm{H}}{\mathrm{~m}}} & r^{\prime}=1.6225 \times 10^{-2} \mathrm{ft} \\
X_{1}=\omega L_{1}=(2 \pi 60)\left(1.101 \times 10^{-6}\right)(1000)=\underline{\underline{0.4153} \Omega / \mathrm{km}}
\end{array}
$$

4.11

(a) $L_{1}=2 \times 10^{-7} \ln \left(\frac{4.8}{1.6225 \times 10^{-2}}\right)=1.138 \times 10^{-6} \mathrm{H} / \mathrm{m}$
$X_{1}=\omega L_{1}=2 \pi(60)\left(1.138 \times 10^{-6}\right)(1000)=0.4292 \Omega / \mathrm{km}$
(b) $L_{1}=2 \times 10^{-7} \ln \left(\frac{3.2}{1.6225 \times 10^{-2}}\right)=1.057 \times 10^{-6} \mathrm{H} / \mathrm{m}$
$X_{1}=2 \pi(60)\left(1.057 \times 10^{-6}\right)(1000)=0.3986 \Omega / \mathrm{km}$
L_{1} and X_{1} increase by 3.35% (decrease by 4.02%) as the phase spacing increases by 20% (decreases by 20%).

4.20

$$
D_{e q}=\sqrt[3]{10 \times 10 \times 20}=12.6 \mathrm{~m}
$$

From Table A.4, $D_{S}=(0.0435 \mathrm{ft}) \frac{1 \mathrm{~m}}{3.28 \mathrm{ft}}=0.0133 \mathrm{~m}$

$$
\begin{aligned}
X_{1} & =\omega L_{1}=2 \pi(60) 2 \times 10^{-7} \ln \left(\frac{12.6}{0.149}\right) \frac{\Omega}{\mathrm{m}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \\
& =0.335 \Omega / \mathrm{km}
\end{aligned}
$$

4.41

$$
D_{e q}=\sqrt[3]{10 \times 10 \times 20}=12.6 \mathrm{~m}
$$

From Table A.4, $r=\frac{1.293}{2}$ in $\left(\frac{0.0254 \mathrm{~m}}{1 \mathrm{in}}\right)=0.01642 \mathrm{~m}$

$$
\begin{aligned}
D_{S C} & =\sqrt[3]{r \cdot d^{2}}=\sqrt[3]{0.01642(0.5)^{2}}=0.16 \mathrm{~m} \\
C_{1} & =\frac{2 \pi \varepsilon_{0}}{\ln \frac{D_{e q}}{D_{S c}}}=\frac{2 \pi\left(8.854 \times 10^{-12}\right)}{\ln \left(\frac{12.6}{0.16}\right)}=1.275 \times 10^{-11} \mathrm{~F} / \mathrm{m} \\
\bar{Y}_{1} & =j \omega C_{1}=j 2 \pi(60) 1.275 \times 10^{-11}(1000)=j 4.807 \times 10^{-6} \mathrm{~S} / \mathrm{km} \\
Q_{1} & =V_{\text {IL }}{ }^{2} Y_{1}=(500)^{2} 4.807 \times 10^{-6}=1.2 \mathrm{MVAR} / \mathrm{km}
\end{aligned}
$$

5.14

(a) $\bar{z}_{C}=\sqrt{\frac{\bar{z}}{\bar{y}}}=\sqrt{\frac{0.03+j 0.35}{4.4 \times 10^{-6} \angle 90^{\circ}}}=282.6 \angle-2.45^{\circ} \Omega$
(b) $\bar{\gamma} l=\sqrt{\bar{z} \bar{y}}(l)=\sqrt{\left(0.35128 \angle 85.101^{\circ}\right)\left(4.4 \times 10^{-6} \angle 90^{\circ}\right)}(500)$

$$
=0.622 \angle 87.55^{\circ}=0.02657+j 0.6210 \mathrm{pu}
$$

5.38

From Problem 5.14

$$
\left.\begin{array}{l}
\begin{array}{rl}
\bar{A}=0.8794 \angle 0.66^{\circ} \mathrm{pu} ; & A=0.8794 \text { and } \theta_{A}=0.66^{\circ} \\
\bar{B} & =\bar{Z}^{\prime}
\end{array}=134.8 \angle 85.3^{\circ} \Omega ; \quad Z^{\prime}=134.8 \text { and } \theta_{Z}=85.3^{\circ} \\
P_{R \max }
\end{array}=\frac{500 \times 500}{134.8}-\frac{(0.8794)(500)^{2}}{134.8} \cos \left(85.3^{\circ}-0.66^{\circ}\right)\right)
$$

For this loading at unity power factor,

$$
I_{R}=\frac{P_{R \max }}{\sqrt{3} V_{R L L}(P F)}=\frac{1702}{\sqrt{3}(500)(1.0)}=1.966 \mathrm{kA} / \text { Phase }
$$

From Table A.4, the thermal limit for 3 ACSR 1113 kcmil conductors is $3 \times 1.11=3.33 \mathrm{kA} / \mathrm{p}$ hase. The current 1.966 kA corresponding to the theoretical steadystate stability limit is well below the thermal limit of 3.33 kA .

5.41

(a) $\bar{Z}=\bar{z} l=(0.088+j 0.465) 100=8.8+j 46.5 \Omega$

$$
\begin{aligned}
& \frac{\bar{Y}}{2}=\frac{\bar{y} l}{2}=\left(j 3.524 \times 10^{-6}\right) 100 / 2=j 0.1762 \mathrm{mS} \\
& Z_{\text {buse }}=V_{L \text { hase }}^{2} / S_{3 \phi \text { base }}=\frac{(230)^{2}}{100}=529 \Omega \\
& \therefore \bar{Z}=(8.8+j 46.5) / 529=0.0166+j 0.088 \mathrm{pu} \\
& \frac{\bar{Y}}{2}=j 0.1762 /(1 / 0.529)=j 0.09321 \mathrm{pu}
\end{aligned}
$$

The nominal π circuit for the medium line is shown below:

(b) $S_{3 \phi \text { rated }}=V_{L \text { nated }} I_{L \text { rated }} \sqrt{3}=230(0.9) \sqrt{3}=358.5 \mathrm{MVA}$

