Name: \qquad UIN: \qquad Score: (This quiz is just for practice.)

In the circuit above,

1. Write the source voltage as a time function with cosine, assuming this is a 60 Hz system.

$$
v(t)=40 \sqrt{2} \cos \left(2 \pi 60 t+10^{\circ}\right) \mathrm{kV}
$$

2. Find the active and reactive power produced by the source. (Remember that $V=I Z$ and $S=V I^{*}=P+j Q$.)

$$
\begin{gathered}
Z=12 \|-j 40=11-j 3.3 \Omega \\
I=\frac{V}{Z}=\frac{40 \angle 10^{\circ} \mathrm{kV}}{11-j 3.3 \Omega}=3.48 \angle 26.7^{\circ} \mathrm{kA} \\
S=V I^{*}=\left(40 \angle 10^{\circ} \mathrm{kV}\right)\left(3.48 \angle-26.7^{\circ} \mathrm{kA}\right)=133.3-j 40 \mathrm{MVA} \\
P=133.3 \mathrm{MW} \\
Q=-40 \mathrm{Mvar}
\end{gathered}
$$

3. If the resistor and capacitor are together considered the load, what is the load's power factor?

$$
\text { p. } f .=\cos (\phi)=\cos \left(\theta_{v}-\theta_{i}\right)=\cos \left(10^{\circ}-26.7^{\circ}\right)=\cos \left(-16^{\circ}\right)=0.958 \text { leading }
$$

