Part 1

Code the LU factorization algorithm discussed in the class notes for full matrices, along with the forward/backward substitution. To test your algorithm use it to factor and solve the below matrix. You do not need to code pivoting.

$$
\mathbf{A}=\left[\begin{array}{cccc}
5 & 1 & 0 & -4 \\
1 & 4 & 0 & -3 \\
0 & 0 & 3 & -2 \\
-4 & -3 & -2 & 10
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

Part 2

Code the ability to read a sparse matrix as a set of triplets into either CSR or Linked List format and multiply the sparse matrix by a dense vector. Use this code to validate the solution to part 1 by checking that \mathbf{A} times \mathbf{x} will result in \mathbf{b}.

Turn in all code, input and output data.

