Class 16: Phasor analysis for AC circuits

- A phasor is a complex number that represents a cosine-valued AC function
- The Root Mean Square (RMS) for cosine is found by dividing the maximum value by $\sqrt{2}$
- In polar form, $R \angle \theta$, a phasor represents the RMS voltage or current and phase angle

$$
R \angle \theta \rightarrow \sqrt{2} R \cos (2 \pi f t-\theta)
$$

- Conversions to rectangular form: $\mathrm{a}+\mathrm{jb}$, and back can be done with these identities:

$$
R=\sqrt{a^{2}+b^{2}} \quad \theta=\operatorname{aTan}\left(\frac{b}{a}\right) \quad a=R \cos \theta \quad b=R \sin \theta
$$

- Complex number addition can be done in rectangular form, and complex number multiplication can be done in polar form.
- Phasor diagrams have the real part on the x axis and imaginary part on the y axis.
- The angular frequency is $\omega=2 \pi f$.
- KVL, KCL, and Ohm's law all apply with AC phasor analysis exactly as with DC.
- This means you can use Node-Voltage and Mesh-Current analysis methods too.

Practice problems for phasor conversion

1. Convert $5 \angle 12^{\circ} \mathrm{A}$ to rectangular form.
2. Convert $14 \angle 20^{\circ} \mathrm{V}$ to the cosine time function, assuming a frequency of 14 kHz .
3. Find the polar form phasor for $20 \cos \left(377 t-40^{\circ}\right) \mathrm{kV}$.
4. Convert the phasor $12-\mathrm{j} 3$ A to polar form.
5. Sketch a time plot of the phasor $18 \angle 12^{\circ} \mathrm{mA}$, assuming a frequency of 100 MHz .
6. Draw a phasor diagram for the phasor $35 \angle-110^{\circ} \mathrm{V}$.
7. Convert $24 \angle-60^{\circ} \mathrm{A}$ to rectangular form.
8. Convert $30 \angle 0^{\circ} \mathrm{V}$ to the cosine time function, assuming a frequency of 50 Hz .
9. Find the rectangular form phasor for $20 \cos \left(\left(6.28 \times 10^{6}\right) t+18^{\circ}\right) \mathrm{kV}$.
10. Convert the phasor $30+\mathrm{j} 30 \mathrm{kA}$ to polar form.
11. Sketch a time plot of the phasor $1.32 \angle 10^{\circ} \mathrm{MV}$, assuming a frequency of 60 Hz .
12. Draw a phasor diagram for the two phasors $3.5 \angle 10^{\circ} A$ and $2.7 \angle 40^{\circ} A$.
13. Convert $16 \angle-90^{\circ}$ A to rectangular form.
14. Convert $100.5 \angle 0^{\circ} \mathrm{V}$ to the cosine time function, assuming a frequency of 400 Hz .
15. Find the polar form phasor for $200 \sin (377 t) \mathrm{kV}$.
16. Convert the phasor j 5 V to polar form.
17. Sketch a time plot of the phasor $300 \angle-90^{\circ} \mathrm{V}$, assuming a frequency of 10 Hz .
18. Draw a phasor diagram for the phasor $3.25 \angle 0^{\circ} \mathrm{V}$.
19. Convert $2.0 \angle 90^{\circ} \mathrm{MV}$ to rectangular form.
20. Convert $74.5 \angle 14^{\circ} \mathrm{V}$ to the cosine time function, assuming a frequency of 2500 Hz .
21. Find the rectangular form phasor for $55 \cos \left(10^{9} t-108^{\circ}\right) \mathrm{V}$. What is the frequency?
22. Convert the phasor $10-\mathrm{j} 30000 \mathrm{kA}$ to polar form.
23. Sketch a time plot of the phasor $100 \angle 90^{\circ} \mathrm{A}$, assuming a frequency of 6000 Hz .
24. Draw a phasor diagram for the two phasors $90 \angle 90^{\circ} A$ and $90 \angle-90^{\circ} A$.

## Example 1

- Solve for $I$ as a phasor using any method
- Assuming the frequency is 1 kHz , write the time signals for V and I



## Example 2

- $i_{s}(t)=7.1 \cos \left(1256 t-10^{\circ}\right) A$
- $v_{s}(t)=113.1 \cos \left(1256 t+45^{\circ}\right) \mathrm{V}$
- Find $v_{1}(t)$ using phasor analysis
- Steps:
- Convert time signals into phasors (complex numbers)
- Solve the circuit using regular circuit techniques (just with complex numbers)
- Convert the answer back into a time signal with the same frequency


