ECEN 214 handout for Mar 28, 2022

Class 16: Phasor analysis for AC circuits

- A **phasor** is a complex number that represents a cosine-valued AC function
- The Root Mean Square (RMS) for cosine is found by dividing the maximum value by $\sqrt{2}$
- In polar form, $R \angle \theta$, a phasor represents the RMS voltage or current and phase angle

$$R \angle \theta \rightarrow \sqrt{2} R \cos(2\pi f t - \theta)$$

- Conversions to rectangular form: a+jb, and back can be done with these identities:

$$R = \sqrt{a^2 + b^2}$$
 $\theta = aTan\left(\frac{b}{a}\right)$ $a = R\cos\theta$ $b = R\sin\theta$

- Complex number addition can be done in rectangular form, and complex number multiplication can be done in polar form.
- Phasor diagrams have the real part on the x axis and imaginary part on the y axis.
- The angular frequency is $\omega = 2\pi f$.
- KVL, KCL, and Ohm's law all apply with AC phasor analysis exactly as with DC.
- This means you can use Node-Voltage and Mesh-Current analysis methods too.

Practice problems for phasor conversion

- 1. Convert $5 \angle 12^{\circ}$ A to rectangular form.
- 2. Convert $14 \angle 20^{\circ}$ V to the cosine time function, assuming a frequency of 14 kHz.
- 3. Find the polar form phasor for $20 \cos(377t 40^\circ)$ kV.
- 4. Convert the phasor 12-j3 A to polar form.
- 5. Sketch a time plot of the phasor $18 \angle 12^{\circ}$ mA, assuming a frequency of 100 MHz.
- 6. Draw a phasor diagram for the phasor $35 \angle -110^{\circ}$ V.
- 7. Convert $24 \ge -60^{\circ}$ A to rectangular form.
- 8. Convert $30 \ge 0^{\circ}$ V to the cosine time function, assuming a frequency of 50 Hz.
- 9. Find the rectangular form phasor for $20 \cos((6.28 \times 10^6)t + 18^\circ)$ kV.
- 10. Convert the phasor 30+j30 kA to polar form.
- 11. Sketch a time plot of the phasor 1.32∠10° MV, assuming a frequency of 60 Hz.
- 12. Draw a phasor diagram for the two phasors $3.5 \angle 10^\circ A$ and $2.7 \angle 40^\circ A$.
- 13. Convert $16 \angle -90^{\circ}$ A to rectangular form.
- 14. Convert 100.5∠0° V to the cosine time function, assuming a frequency of 400 Hz.
- 15. Find the polar form phasor for $200 \sin(377t)$ kV.
- 16. Convert the phasor j5 V to polar form.
- 17. Sketch a time plot of the phasor $300 \ge -90^{\circ}$ V, assuming a frequency of 10 Hz.
- 18. Draw a phasor diagram for the phasor $3.25 \angle 0^{\circ}$ V.
- 19. Convert 2.0 \angle 90° MV to rectangular form.
- 20. Convert 74.5∠14° V to the cosine time function, assuming a frequency of 2500 Hz.
- 21. Find the rectangular form phasor for $55 \cos(10^9 t 108^\circ)$ V. What is the frequency?
- 22. Convert the phasor 10-j30000 kA to polar form.
- 23. Sketch a time plot of the phasor $100 \angle 90^{\circ}$ A, assuming a frequency of 6000 Hz.
- 24. Draw a phasor diagram for the two phasors $90 \angle 90^\circ A$ and $90 \angle -90^\circ A$.

Example 1

- Solve for *I* as a phasor using any method
- Assuming the frequency is 1 kHz, write the time signals for V and I

Example 2

- $i_s(t) = 7.1 \cos(1256t 10^\circ) A$
- $v_s(t) = 113.1 \cos(1256t + 45^\circ) V$
- Find $v_1(t)$ using phasor analysis
- Steps:
 - Convert time signals into phasors (complex numbers)
 - Solve the circuit using regular circuit techniques (just with complex numbers)
 - Convert the answer back into a time signal with the same frequency

