Capacitors	Inductors
- Fundamental equation: $i=C \frac{d v}{d t}$, where C is capacitance in Farads	- Fundamental equation: $v=L \frac{d i}{d t}$, where L is inductance in Henries
- Add in parallel, combine in series the way resistors do in parallel	- Combine in series and parallel the same way as resistors
- In steady-state, act like an open circuit	- In steady-state, act like a short circuit
- For an instantaneous change, voltage remains the same	- For an instantaneous change, current remains the same
- Energy stored is $C v^{2}$	- Energy stored is $L i^{2}$

Transient circuit solutions: We are solving for v and i as a function of time, $v(t)$ and $i(t)$. Write the differential equations using KVL and KCL

For the following examples, solve
(1) Simplified circuit, combining inductors and capacitors as much as possible
(2) Before the switch: steady state v and i, and energy stored in capacitors and inductors.
(3) Instantaneously after the switch: v and i, differential equations describing the circuit.
(4) A long time after the switch: steady-state v and i, and energy stored in the capacitors.

Example 1
10Ω

Switch closes at
$t=0$ seconds

Initial voltage on capacitor is 2 V
$C=5 \mu F$

Example 2

Example 3: The "switching" action is to add an accidental short circuit between a and b . What's the instant and steady-state current through the short circuit?

