- Series combination: $R_{eq} = R_1 + R_2$
- Parallel combination $R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{R_1 R_2}{R_1 + R_2}$ Voltage dividers: $V_1 = V_S \cdot \frac{R_1}{R_1 + R_2}$ and $V_2 = V_S \cdot \frac{R_2}{R_1 + R_2}$ Current dividers: $V_1 = V_S \cdot \frac{R_2}{R_1 + R_2}$ and $V_2 = V_S \cdot \frac{R_1}{R_1 + R_2}$

Convert delta to wye	Convert wye to delta
$R_1 = \frac{R_b \cdot R_c}{R_c + R_c + R_c}$	$R_a = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_2}$
$R_1 - \frac{R_a + R_b + R_c}{R_a \cdot R_c}$ $R_2 = \frac{R_a \cdot R_c}{R_c + R_c}$	$R_b = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R_2}$
$R_2 - \frac{R_a + R_b + R_c}{R_a \cdot R_b}$ $R_3 = \frac{R_a \cdot R_b}{R_b + R_c}$	$R_c = \frac{R_1 R_2 + R_2 R_3 + R_1 R_3}{R}$
$R_3 - \frac{R_a + R_b + R_c}{R_a + R_b + R_c}$	$R_c = \frac{R_3}{R_3}$

- Measure voltage across device or between two nodes
- Measure current by breaking circuit
- Measure resistance with Wheatstone bridge

Solve for I_s and the voltage across each resistor

Solve for I_s and the current through each resistor

Find the voltage V, the power delivered by the source, and power dissipated in the 10Ω resistor

Examples of voltage and current dividers

Example of delta-wye transformation

