- Series combination: $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}$
- Parallel combination $\mathrm{R}_{\mathrm{eq}}=\frac{1}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{R_{2}}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
- Voltage dividers: $V_{1}=V_{s} \cdot \frac{R_{1}}{R_{1}+R_{2}}$ and $V_{2}=V_{s} \cdot \frac{R_{2}}{R_{1}+R_{2}}$
- Current dividers: $V_{1}=V_{s} \cdot \frac{R_{2}}{R_{1}+R_{2}}$ and $V_{2}=V_{s} \cdot \frac{R_{1}}{R_{1}+R_{2}}$

Convert delta to wye	Convert wye to delta
$R_{1}=\frac{R_{b} \cdot R_{c}}{R_{a}+R_{b}+R_{c}}$	$R_{a}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}{R_{1}}$
$R_{2}=\frac{R_{a} \cdot R_{c}}{R_{a}+R_{b}+R_{c}}$	$R_{b}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}{R_{2}}$
$R_{3}=\frac{R_{a} \cdot R_{b}}{R_{a}+R_{b}+R_{c}}$	$R_{c}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}}{R_{3}}$

- Measure voltage across device or between two nodes
- Measure current by breaking circuit
- Measure resistance with Wheatstone bridge

Solve for I_{S} and the voltage across each resistor

Solve for I_{s} and the current through each resistor

Find the voltage V, the power delivered by the source, and power dissipated in the 10Ω resistor

Examples of voltage and current dividers

Example of delta-wye transformation

